Graded ARM assembly language Examples

These examples have been created to help students with the basics of Keil’s ARM development system. | am providing
a series of examples that demonstrate the ARM’s instruction set.

These begin with very basic examples of addition. If any reader has difficulties with this material or can suggest
improvements or corrections, please email me at alanclements@ntlworld.com and | will do my best to make the
appropriate changes.

In most examples, | present the problem in words, the basic code, and then the assembly language version. | also show
the output of the simulator at various stages during the simulation. When writing assembly language | use bold font to
indicate the destination operand (this will be in the code fragments as the assembler does not support this).

ok w

SNo

10.

11.

12.
13.

14.
15.
16.
17.

18.

Quick Guide to Using the Keil ARM Simulator

Run the IDE package. | am using pVision V4.22.22.0

Click Project, select New uMicrovision Project Note that bold blue font indicates your input to the
computer and bold blue indicates the computer’s response (or option).

Enter filename in the File name box. Say, MyFirstExample

Click on Save.

This causes a box labelled Select Device for Target ‘Target 1’ to pop up. You now have to say which
processor family and which version you are going to use.

From the list of devices select ARM and then from the new list select ARM7 (Big Endian)

Click on OK. The box disappears. You are returned to the main pVision window.

We need to enter the source program. Click File. Select New and click it. This brings up an edit box
labelled Textl. We can now enter a simple program. | suggest:

AREA MyFirstExample, CODE, READONLY

ENTRY
MOV rO,#4 ;load 4 into rO
MOV rl,#5 ;load 5 into rl
ADD r2,r0,el ;add rO0O to rl and put the result in r2
S B S ;force infinite loop by branching to this line
END ;end of program

When you’ve entered the program select File then Save from the menu. This prompts you for a File
name. Use MyFirstExample.s The suffix .s indicates source code.

This returns you to the window now called MyFirstExample and with the code set out using ARM’s
conventions to highlight code, numbers, and comments.

We now have to set up the environment. Click Project in the main menu. From the pulldown list select
Manage. That will give you a new list. Select Components, Environment,Books..

You now get a form with three windows. Below the right hand window, select Add Files.

This gives you the normal Windows file view. Click on the File of type expansion arrow and select
Asm Source file (*.s*; *.src; *.a*). You should now see your own file MyFirstExample.s appear in
the window. Select this and click the Add tab. This adds your source file to the project. Then click
Close. You will now see your file in the rightmost window. Click OK to exit.

That’s it. You are ready to assemble the file.

Select Project from the top line and then click on Built target.

In the bottom window labelled Build Output you will see the result of the assembly process.

You should see something like:

Build target ‘"Target 1

assembling MyFirstExample.s...

linking...

Program Size: Code=16 RO-data=0 RW-data=0 ZI-data=0
""MyFirstExample.axf** - 0 Error(s), 0 Warning(s).

The magic phrase is “0 Error(s)”. If you don’t get this you have to re-edit the source file. And then go
to Project and Build target again.

Alan Clements ARM simulator notes

Page 1

mailto:alanclements@ntlworld.com

Example 1 ADDITION

The problem: P=Q+R+S
LetQ=2,R=4,S=5.Assumethatrl =Q, r2 =R, r3=S. The result Q will go in r0.

The Code
ADD rx0,rl,r2 ;add Q to R and put in P
ADD rx0,r0,r3 ;jadd S to P and put the result in P

The program
AREA Examplel, CODE, READONLY
ADD 1r0,rl,r2

ADD 1r0,r3
Stop B Stop
END

Notes:

1. The semicolon indicates a user-supplied comment. Anything following a semicolon on the same line is
ignored by the assembler.

2. Thefirstline is AREA Examplel, CODE, READONLY isan assembler directive and is required to set up
the program. It is a feature of the development system and not the ARM assembly language. An assembler
from a different company may have a different way of defining the start of a program. In this case, AREA
refers to the segment of code, Examplel is the name we’ve given it, CODE indicates executable code rather
than data, and READONLY state that it cannot be modified at run time.

3. Anything starting in column 1 (in this case Stop) is a label that can be used to refer to that line.

4. The instruction Stop B Stop means ‘Branch to the line labelled Stop’ and is used to create an infinite
loop. This is a convenient way of ending programs in simple examples like these.

5. The last line END is an assemble directive that tells the assembler there is not more code to follow. It ends the
program.

Figure Example 1.1 shows the screed after the program has been loaded and the simulation mode entered. You can
configure this window. We have included the disassembly window that shows the code in memory and converts it into
instructions. This feature can be confusing because it will take data and try and convert it into instructions. However,
the feature is useful because it shows the actual ARM instructions that are created by your instructions. We will see that
some instructions that you write are pseudo instructions that are translated into appropriate ARM instructions.

]
Alan Clements ARM simulator notes Page 2

Figure Example 1.1 The state of the system after loading the code for Example 1

|i| E:\CengageEdition_2\StructuredARMexamples\Examplel_ADDITION.uvproj - pVisiond i] |
File Edit Wiew Project Flash Debug Peripherals Tools 5VCS Window Help

DEda| s o8& k] s @e ¢
L AE IR o J.Lla.gh@ N HENE

|Reg|sters a X| Disassembly a X|
Register [Value | 3: ADD =r0,rl,r2 ;P =g + R i’
S Current E{)O:{OGOGOGOG E0810002 ADD E0,R1,R2
- RD 00000000 4: ADD x0,r3 scBE=PF + 5
‘R1 00000000 O0x00000004 EO300003 ADD REO,RO,R3
-R2 00000000 5: Stop B Stop ;Fall through to an infinite loop
-R2 00000000 Ox0Q00000008 EAFFFFFE B O0x00000008
R4 00000000 O0x0000000C Q0000000 ANDED EO0,RO,RO
‘RE 00000000 0x00000010 Q0000000 ANDED EO0,RO,RO
RE 00000000 0x00000014 Q0000000 ANDED EO0,RO,RO
0x00000018 00000000 ANDED E0,RO,RO i
R7 (00000000 7 _'I—I
R& (00000000
~RY 00000000 Examplel_ADDITION.s - X
21? Wﬂ:ﬂﬂﬂﬂﬂﬂﬂﬂ 1 LREL Examplel, CODE, READONLY j
2
RI2 00000000
~RI3(SF) Dx00DODDOO0 =3 APD - rl,rl,r2 ;P =0 +R
“RI4(LR) D<00D00DOO0 . ADD r0,r3 ‘P=F+5
-~ RI15(FC) 00000000 5 Stop B Stop ;Fall through to an infinite loop
B CPSR (0000003 £ ~
Bl SPSR 00000000 7 END ;This ends the program
¥l User/System .
[F- Fast Intemupt
£
£
£
£
(00000000
Supervisor
0
.
@Projed | = Registers I‘I I _'IJ

| |[sin]

Because there is no means of entering initial data into registers, you have to do that manually. Simply double-click a
register and then modify its value.

e —
Alan Clements ARM simulator notes Page 3

Figure Example 1.2 The state of the system after funning the code.

() E:\CengageEdition_2\StructuredARMexamples\Examplel_ADDITION.uvproj - pVi Y [m]
File Edit View Project Flash Debug Peripherals Tools 5VWCS Window Help
D =A™ M- REEREERF .]
% EO BT u e EI.E.@EE D@ -
|Reg|sters n XHDlsassemhl]r n X|
Register [value [« 2: ADD r0,rl,r2 i’
= Current 0x00000000 EOB10002 ADD RO,R1,R2
_______ RO DDD0DO00E 3: aAppD ro,r3
_______ A1 00000002 0x00000004 EOS00003 ADD RO,RO,R3
_______ = DDD0D000A 4: Stop B Stop
_______ R3 00000005 0x00000008 EAFFFFFE B 0x00000008
_______ R4 00000000 0x0000000C 00000000 ANDEQ RO,RO, RO
_______ 5 00000000 0x00000010 00000000 ANDEQ RO,RO, RO
_______ RE 00000000 |- 0x00000014 00000000 ANDEQ RO,RO, RO
_______ A7 00000000 0x00000018 00000000 ANDEQ RO,RO, RO _ILI
4 I I 3
"""" Ra (00000000
"""" R3 k00000000 [] Examplel_ADDITION.s v X
...... R10 (00000000 AREA Examplel, CODE, READONLY
"""" R11 (00000000 ADD rO,rl,r2
"""" R12 (00000000 ADD r0O,r3
"""" R13(5F) {b:DDDDDDDD Ftop B sTop
....... H14{LH‘. END -
E Project | = Registers 1 3
| |

Note that the contents of r0 are 2 + 4 + 5 = 11 = 0x0B. This is the result we expected.

Alan Clements ARM simulator notes Page 4

Running a Program in the Simulator

Having loaded a program as code and assembled it, you need to run it. You can either continue from where you
left off after assembling the code with Build target, or you can start afresh and load the code.

If you load the ARM simulator, it will open in the same state you closed it (i.e., the project and source file
loaded). If the project is not open, select the Project tag, and then select Open Project.. from the pull down
window. If you are not in the correct directory, select the appropriate directory in the normal way. Then click on
MyFirstExample.uvproj which is the name of the project we set up, and then click on the Open tab. This loads

your project and you are ready to go.

To run the code select Debug from the top menu. From the pull down menu select Start/Stop Debug Session.
This brings up a message telling you that you are in the EVALUATION MODE and you click OK to dismiss
it. You should see a screen like the one below. You can operate on it exactly like any other Windows application

and use the View tab to open other Windows (such as display memory).

T E:\Cengagetdtaon_2\StrocturedARMesamgles \MyFirstExasnplesvprs) - =101 %}
Bile Ede Yew Projet Figsh Debog Pegipherals Tools SVCS Window Melp
S E 2 Re S&
o el aoo v 2 DRlsEla Dl .- 3-8 -
Reguters B X' Dussiembly ax:
= Currert
RO
a1
R2
A3 o by branching
He r = -
AS » "J
RE
A7 £] MyFstExample.s v X
R? 1 AREA MyFirscExasple, CODE, READONLY j
igd 2 ENTRY
it 53 | MoV e0, 04
a2 1 MW rl,.$s
vl 5 ADD r2,r0, 11
A13(59) 6 s B -
A LA D
A8 PL) £s
- CPSA
3 <PSH
User/ Systaen
+ Fast ntenupe
Herygt
Supervisor
+1 - Aoed —
¥ Undefired
= Intena
FCs 00000000 - |
b ¢ S Registers < J 2
Commana @ X | CahStack - Locaks X
Running with Code Size Limiv: 32K _-_I Nams LocationValue
Load *"E:\\CangageEd StructurediRMexasple
h 32768 Byte Code Size
Lea |O%)
-
o] »
> «]
ASSIGN BresxDisable BraskEnstle BreakKill I o Call Stwck « Localy I - ()
i (Snutat!

Now you can execute code. We are interested in the instruction-by-instruction mode that lets you execute an
instruction at a time. If you click on the step-in button you will execute a single instruction.

VR
i This is the step-in button.

You will be able to see any changes in the registers on the left. You will also be able to see the value of the
program counter, PC, and the status register, CPSR. Note that function key F11 performs the same operation.

When you’ve finished, you must click on the Start/Stop Debug Session item under the Project menu. This
returns you to the source code which you can change as necessary. After you’d changed it you must use the

Build target command again to perform a re-assembly.

Alan Clements ARM simulator notes

Page 5

Example 2 ADDITION

This problem is the same as Example 1. P=Q+R + S
Once again, let Q =2,R=4,S=5and assumerl = Q, r2 =R, r3 = S. In this case, we will put the data in memory in
the form of constants before the program runs.

The Code
MOV rl, #0Q ;load Q into rl
MOV r2,#R ;load R into r2
MOV 3, #S ;load S into r3

ADD xO,rl,r2 ;Add Q to R
ADD x0,r0,r3 ;Add S to (Q + R)

Here we use the instruction MOV that copies a value into a register. The value may be the contents of another register or
a literal. The literal is denoted by the # symbol. We can write, for example, MOV r7, r0, MOV rl, #25 or
MOV r5, #Time

We have used symbolic names Q, R and S. We have to relate these names to actual values. We do this with the EQU
(equate) assembler directive; for example,

Q EQU 2

Relates the name Q to the value 5. If the programmer uses Q in an expression, it is exactly the same as writing 2. The
purpose of using Q rather than 2 is to make the program more readable.

The program

AREA Example2, CODE, READONLY

MOV rl, #Q ;load rl with the constant Q
MOV r2,#R
MOV r3,#S

ADD «r0O,rl,r2
ADD 1r0,r0,r3

Stop B Stop
Q EQU 2 ;Equate the symbolic name Q to the wvalue 2
R EQU 4 ;
S EQU 5 ;
END

Figure Example 2.1 shows the state of the system after the code has been loaded. If you look at the disassembly
window, you will see that the constants have been replaced by their actual values.

Figure Example 2.2 shows the situation after the code has been executed.

L]
Alan Clements ARM simulator notes Page 6

Figure Example 2.1 The state of the system after loading the code.

E:\CengageEdition_2\5tructuredARMexamples\Example2_ADDITIONa.uvproj - pVisiond - |EI|5|
File Edit View Project Flash Debug Peripherals Tools 3SVCS Window Help
BETT I = £} 2o @e o4
FIERIEER R I a.ﬁ.@hmv -Z-@-D-@- x|
|Reg|sters o x | | Disassembly 1 Xl
Register IVaIue I; 2: MOV rl,#Q ;load rl with the constant @ i’
= t E{}OxOOGGGGGG E3a01002 MOV R1, #0x00000002
------- RO 000000000 3 MoV z2, %R
,,,,,,, A1 00000000 0=x00000004 E3R02004 MOV R2, $0x00000004
,,,,,,, R2 00000000 4: MOV x3,#5
_______ R3 00000000 030002?008 ESEEgEOS OHO: , R3, #0x00000005
....... R4 1] 0000{)00C E0810002I .I;:;D'I RO,R1,R2
------- R5 00000000 ® o Rt PR
....... Rs 1] 0000{)010 EDBDDDD3I .I;:J:;D'I RO,RO,R3
------- R7 0000000 ® e
....... RE 00000000 T: Stop B Stop
_______ RY 00000000 O=x00000014 EAFFFFFE B 0x00000014
_______ R10 00000000 O=x00000018 OQO00000CO ANDEQ RO,RO,RO —ILI
------- R11 00000000 <] L
"""" R12 D 0DD00000 - X
"""" R13{5F) D 0DD00000
....... R14(LR) 00000000 o AREL Example?, CCDE, RERDCONLY |
....... H15{PC] 00000000 E:>02 I MOV rl,#%Q :load rl with the constant Q ol
- CPSR 000000003 03 MOV r2, R
B PSR 00000000 04 MOV 3,5
[F- User/System 05 ADD r0,Tl, T2
[* Fast Intemupt 06 ADD r0,r0,T3
[Intemupt 07 Stop B Stop
¥ Supervisor by 0
- Abort s a EQUD 2 sEquats the nbolic name ¢ to the value 2
[#- Undefined 10 E EQU 4 H —
e |r|temE|| 15 EQU 5 :
~PC & 12 END L
E Project | = Registers I 4I I _PI_I
||5|mulat| r
Figure Example 2.2 The state of the system after running the code.
I?I E:\CengageEdition_2\StructuredARMexamples\ExampleZ_ADDITIONa.uvproj - pVisiond — |E||i|
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
OsEd|: » =) 2 @e od
B0 BRo nle EI.E.QEE -0 B!
|Reg|stels a X||D|;assembl1r a X|
Register |‘ul‘a|ue I; 2 MOV rl,#Q ;load rl with the constant Q ﬂ
- i 0x0Q0000000 E3A01002 MOV R1,#0x00000002
....... RO <00000D0E EH MOV 2, R .
,,,,,,, R1 300000002 0){0002?004 ESAI(‘]I(Z;(:JFOQ 3H(;‘; R2Z2, #0x00000004
R2 00000004 : e
R 300000005 0}{'{]000{-)008 E3A03005 MOV R3, #0x00000005
_______ R4 00000000 5: app r0,rl,r2
,,,,,,, RS 300000000 OxOOOO?OOC E0O810002 4ADD RO,R1,R2
_______ RS 00000000 H aAph rQ,rQ,r3
R7 300000000 0}{'{]000{-)010 EQS00003 ADD RO,RO,R3
‘RE 300000000 T: Stop B Stop
i oot | B{fd0C 00010 00000000 ANDEQ RO,RO,RO
“R10 (x00000000 ® 2 (RO, _ILl
------- RN 00000000 >
R12 (00000000 - X
“R13 (5F) 00000000
-R14 (LR} (k00000000 01 LREL Example2, CODE, READONLY —
“R15 (PC) 00000014 02 MOV Fl,#Q :load rl with the constant Q =
®-CPSR 00000003 03 MOV r2,#R
&l SPSR 00000000 04 MOV r3, %3
[User/System 05 ADD rD,rl, T2
[Fast Intemupt e ADD rD,r0,r3
- Intemupt p407 Fton B Stap
Supervisor 08
- Ahort 09 q EQU 2 sEquate the nbolic name O to the value 2]
[# Undefined 10 R EQU 4 H
= Intemal 11 8 EQU 5 ;
mo- ooconnooa. 12 END -
E' Project | = Registers | b | | 4

Alan Clements ARM simulator notes

Page 7

Example 3 ADDITION
The problem once againisP =Q + R+ S. As before, Q =2, R=4,S=5and we assume that r1 =Q,r2=R,r3=S.

In this case, we will put the data in memory as constants before the program runs. We first use the load register,

LDR rl, Qinstruction to load register r1 with the contents of memory location Q. This instruction does not exist and is
not part of the ARM’s instruction set. However, the ARM assembler automatically changes it into an actual instruction.
We call LDR r1, Q a pseudoinstruction because it behaves like a real instruction. It is indented to make the life of a
programmer happier by providing a shortcut.

The Code
LDR rl,Q ;load rl with Q
LDR r2,R ;load r2 with R
LDR r3,S ;load r3 with S

ADD rO0,rl,r2 ;add Q to R

ADD r0,r0,r3 ;add in S

STR r0,Q ;store result in Q
The program

AREA Example3, CODE, READWRITE

LDR rl,Q ;load rl with Q

LDR r2,R ;load r2 with R

LDR r3,S ;load r3 with S

ADD rO,rl,r2 ;add Q to R

ADD r0, r3 ;add in S

STR r0,Q ;store result in Q
Stop B Stop

AREA Example3, CODE, READWRITE

P SPACE 4 ;save one word of storage

0 DCD 2 ;create variable Q with initial value 2

R DCD 4 ;create variable R with initial value 4

S DCD 5 ;create variable S with initial value 5
END

Note how we have to create a data area at the end of the program. We have reserved spaces for P, Q, R, and S. We use
the SPACE directive for S to reserve 4 bytes of memory space for the variable S. After that we reserve space for Q, R,
and S. In each case we use a DCD assembler directive to reserve a word location (4 bytes) and to initialize it. For
example,

Q DCD 2 ;create variable Q with initial wvalue 2
means ‘call the current line Q and store the word 0x00000002 at that location.

Figure Example 3.1 shows the state of the program after it has been loaded. In this case we’ve used the view memory
command to show the memory space. We have highlighted the three constants that have been pre-loaded into memory.

Take a look at the disassembled code. The pseudoinstruction LDR r1l, Q was actually translated into the real ARM
instruction LDR rl, [PC, #0x0018]. This is still a load instruction but the addressing mode is register indirect. In
this case, the address is the contents of the program counter, PC, plus the hexadecimal offset 0x18. Note also that the
program counter is always 8 bytes beyond the address of the current instruction. This is a feature of the ARM’s
pipeline.

Consequently, the address of the operand is [PC] + 0x18 + 8 =0 + 18 + 8 = 0x20.

If you look at the memory display area you will find that the contents of 0x20 are indeed 0x00000002.

Alan Clements ARM simulator notes Page 8

Figure Example 3.1 The state of the system after loading the program

_4 E:\Cengagetdition_2\StructuredARMexamples\Example3_ADDITIONb.uvproj - pVisiond = x
[E=\ d \ ed les\| le3 b. jm|
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
DEEEIET EEVIEETTIE a @ e B
HEO vrou v DRBERE-[E])Z-A-T-F@- %
|Registers n X||Disassembl1r n X|
Register |,“.,a|u|E | 2: LDE rl,Q ;load rl with Q i’
B Current E{}OxDOGGDOGO E5S8F1018 LDR R1, [PC, #0x0018]
. 00000000 3: LDR rZ, R ;load r2 with R
R 300000000 0x00000004 ES9F2018 LDR R2, [BC, $#0x0018]
‘R2 00000000 4: LDR r3, 5 ;1load r3 with 5
v 300000000 0x00000008 ESSF3018 LDR R3, [PC, #0x0018)
= 500000000 5: LDD rO,rl, r2 ;add Q to R
-5 300000000 0x0000000C EQS10002 ADD RO,R1,R2
- RE 00000000 'H ADD rQ,r3 sadd in 5
A7 000000000 0x00000010 EO800003 ADD RO, RO, R3 The code generated by
RE e 1] OOG;C:)O:L& E58§'§§G& Igf'['g ;EEOT;CI:Eu;EG:? ? the pseUdOinStrUCtion
x X
~RY 00000000 c s - s e LDR rl,Q.
~R10 00000000 5@ STop top
~R11 500000000 0=x00000018 EAFFFFFE B 0=x00000018
A2 300000000 0x0000001C 00000000 ANDEQ RO, RO, RO _|;|
~RizsP) oooooooo || LU ‘
- R14 {LR) OxD000D000 E le3 - X
- R18{PC) (00000000
- CPSR 00000003 m LREL Example3, CODE, READWRITE =
- SPSR 00000000 E{>E|2 LDE rl,Q ;load rl with @© —
B User/System 03 LDR r2,R sload rZ with R
[Fast Intemupt 04 LDR r3, 5 ;load r3 with S
B Intemupt 05 ADD r0,rl, r2 :3dd ¢ to R
B Supervisor 05 ADD 1O, T3 ;add in S
- Abart 07 STR rd, g ;stors result in @
- Undefined 8 Stop B Stop
[03
00000000 10 LRER Example3, CCDE, READWRITE
Supervisor . F SPACE 4 ;save one word of storage
0 12 4 DCD 2 ;oreate varisble ¢ with initial valus 2
0.00000000 13 R DCD 4 screate variable R with initial wvalue 4
14 5 DCD 5 ;oreate variskble 5 with initial wvalues & s
| I 15 END -
=] Project | = Registers I‘l | »
|Memu|1r1 n X|
Y
Address: Iﬂl j
0x00000000: E5 9F 10 18 E5 SF 20 18 ES5 S9F 30 18 EO 81 00 02 EC 80 00 03 E5 BF 00 04 EA FF FF FE
:OXOOOODO'_C: 00 00 00 CIO[UD 00 00 02 OO 00 OO0 O4 0O 0O OO 05]CIO 00 00 OO0 CO OO0 00 0O 0O 00 00 0O
0x0 Q038: 00 0O 00 00 00 OO 00 00 Q0 OCIRE)CI Q00 00 00 00 00 OO 0O 00 00 00 00 OO0 00 00 Q0 ;I
t:g?l'lCa Stack + Locals | i
| ||Simu|]

The address of the first data element on
this line is 0x0000001C. The first
element of the next word (i.e., the fifth
byte in the sequence) is at address
0x0000001C + 4 = 0x00000020.

These are the three data values we’ve
stored in memory at locations

0x00000020
0x00000024
0x00000028

These locations are chosen by the
assembler automatically.

Alan Clements ARM simulator notes

Page 9

Figure Example 3.2 The state of the system after loading the program

| | E:\CengageEdition_2\StructuredARMexamples\Example3_ADDITIONb.uvproj - pVisiond - |E||5|
File Edit View Project Flash Debug Peripherals Tools 3VCS Window Help
BECT I TEVIEEITAL -ar@e &4
- ERE TR E | R-Oz3-®-3-@- x|
|Reg|sters o x ||D|sassemh|1r a Xl
Register |W|u,E | 2: LDR r1,Q :load rl with @ f’
= 0x00000000 ES9F1018 LDER R1l, [PC,#0x0018]
3: LDR rZ,R rload r2 with R
0x00000004 ES9F2018 LDR E2, [PC, #0x0018]
4q: LDR r3,5 rload r3 with 5
0x00000008 ES9F3018 LDR R3, [PC, #0x0018]
_______ Rd 00000000 5: ADD rQd,rl,r2 add Q to R
_______ RE 00000000 EbGKOOOOOGOC E0O810002 ADD RO,R1,ER2
300000000 [H ADD r0,r0, r3 radd in S
300000000 Ox00000010 EOE00003 ADD RO,RO,R3
300000000 T: 5TR r0,Q ;2tore result in @
300000000 Ox00000014 ESEF0004 STR RO, [PC, #0=x0004]
300000000 8: Stop B Stop
300000000 Ox00000018 EAFFFFFE B 0=x00000018
B2 000000000 0x0000001C 00000000 ANDEQ RO,RO,RO _|;|
4 »
"""" R13{5F) Q00000000 —Ll
"""" R14 (LR} v X
ARER Example3, CCODE, READWRIIE =
LDR rl,Q ;load rl with @ =
B LDR r2,R ;load r2 with R
- LDR r3, 5 ;load r3 with §
[+ ADD r0,rl, r2 :add g to
B ADD 0, rD, 3 sadd in §
- STR r0,Q ;store result in ©
- Undefined 08 Stop B S5top
5. 03
= IMaﬂd
~PC § 500000000 10 LREL Example3, CODE, RELRDWRITE
) 11D SPLACE 4 ss5ave one word of storage
“Mode Supervisor . . . B B
Siotes g 12 0 DCD 2 ;create variable Q with initial value 2 =
- Seo 0.00000000 13 R DCh 4 ;create variable R with initial value 4
’ 14 5 DCD 5 ;create variable § with initial value §
L 15 END as
=] Project | = Registers _ILI_I _'I_I

Memory 1 a x
I |

Address: ID ﬂ

0x00000000: E5 SF 10 18 ES 9F 20 18 E5 SF 30 18 EO 81 00 02 EO 80 00 03 E5 8F 00 04 EL FF FF FE 00
0x0000001D: 00 0O 00 0O 0O 00 02 00 00 00 04 OO0 OO OO 05 00 00 OO0 0O OO0 00 00 00 00 OO0 0O 0O 00 00

Pw=PAOANOAI" . OO0 A0 A0 00 A0 G0 a0 060 a0 oo an oo an oo an oo an oo a0 an an Ao an Ao an an an nan an

§a Call Stack + Locals

|simulat|

Alan Clements ARM simulator notes Page 10

Figure Example 3.3 The state of the system after loading the program

| | E:\CengageEdition_2\StructuredARMexamples\Example3_ADDITIONb.uvproj - pVisiond - |E||5|
File Edit View Project Flash Debug Peripherals Tools 3SVCS Window Help
BEETIPE: EEREEITIE s @e &4
HmEO BERon 9 EI.E|==|@E|E| 1Z-®-2-@- o |
|Reg|siers n X||D|sassemh|1r a Xl
Register [Value | 2; LDR 1l,Q ;load rl with Q f’
= Current 0x00000000 ES9F1018 LDER R1, [BC, #0x0018]
- RO D000000E 3: LDR rZ, R sload r2 with R
_______ R1 00000002 0x00000004 ES9F2018 LDR R2, [PC,#0x0018]
_______ R 00000004 4: LDR r3, 5 sload r3 with 5
_______ R1 00000005 0x00000008 ES9F3018 LDR R3, [PC, #0x0018]
_______ R4 00000000 5: ADD rQd,rl,r2 add Q to R
_______ RE 00000000 0x0000000C EOQO810002 ADD RO,R1,R2
_______ RE 00000000 a: ADD rQ,r0,r3 sadd in 5
_______ R7 00000000 0x00000010 EOE00003 ADD RO,RO,R3
_______ RE 00000000 T: 5TR r0,Q ;store result in §
_______ RY 00000000 Ox00000014 ESEF0004 STR RO, [PC, $#0=0004]
------- R1D 00000000 8: Stop B Stop
_______ R11 00000000 Ox00000018 EAFFFFFE B 0x00000018
R12 300000000 0x0000001C 00000000 ANDEQ RO,RO, RO _|;|
4 »
"""" R13{5F) 00000000
"""" R14 (LR} 00000000 Example3.s - X
"""" R15{PC) Q00000018 —
- CPSR <000000D2 0 LREZ Example3, CCDE, READWRIIE -
- SPSR 00000000 02 LDR rl,Q sload rl with @ I—
03 LDR r2,R ;load r2 with R
[User/System
- Fast Intemupt 04 LDR 3,5 ;load r3 with §
- Intemupt 05 ADD rl,rl, r2 ;add ¢ to R
¥ Supervisor 06 ADD r0,r0,r3 ;add in §
- Abart 07 STR r0,Q ;stors result in @
T B St
- Undefined S op
e 03
= IMaﬂd
10 AREL Example3, CCDE, READWRITE
~PC 8§ e 0DD00018
)) gt S5PLCE 4 ;gzave one vord of storage
Mode Supervisor - T L :
- States 15 12 g DCD 2 ;oreate variable O with initial valus 2 —
- Seo 0.00000000 i3 R DCD 4 ;create variable R with initial values 4
’ 14 5 DCD 5 ;create variable S with initial value 5
= —— 15 EHND hd
=] Project | £ Registers K I | —'I—I

Memory 1 a x
I |

Address: |u iI

0x00000000: E5 SF 10 18 E5 9F 20 18 E5 SF 30 18 EO 81 00 02 EO 80 00 03 E5 8F 00 04 EA FF FF FE 00
0x0000001D: 00 0O 00 (00 0O 00 OB 00 00 00 04 OO0 OO OO 05 00 00 00 00 OO0 00 00 00 00 OO0 0O 0O 00 00

PwPAOANOAI" . OO0 00 A0 00 A0 G0RWG 060 A0 a0 an oo an oo an oo an oo an oo an an an Ao an oo an nan an

1 Call Stack + Locals |

| |[simulat|

After executing the program the sum of
Q, R, and S has been stored in location P
in memory.

Alan Clements ARM simulator notes Page 11

Example 4 ADDITION
The problem

P=Q+R+Swhere Q=2,R =4, S=5. Inthis case we are going to use register indirect addressing to access the
variables. That is, we have to set up a pointer to the variables and access them via this pointer.

The Code

ADR r4, TheData ;rd points to the data area
LDR rl, [r4d, #Q] ;load Q into rl
LDR r2, [rd, #R] ;load R into r2
LDR r3, [rd,#S] ;load S into r3

ADD r0,rl,r2 ;add Q and R
ADD r0,r0,r3 ;add S to the total
STR r0, [r4,#P] ;save the result in memory

The program

AREA Exampled4, CODE, READWRITE

ENTRY

ADR r4, TheData ;rd4d points to the data area
LDR rl, [r4, #0Q] ;load Q into rl

LDR r2, [r4, #R] ;load R into r2

LDR r3, [rd, #S] ;load S into r3

ADD r0,rl,r2 ;add QO and R
ADD r0,r0,r3 ;add S to the total
STR r0, [r4d, #P] ;save the result in memory
Stop B Stop
P EQU 0 ;offset for P
0 EQU 4 ;offset for Q
R EQU 8 ;offset for R
S EQU 12 ;offset for S

AREA Example4, CODE, READWRITE

TheData SPACE 4 ;save one word of storage for P
DCD 2 ;create variable Q with initial wvalue 2
DCD 4 ;create variable R with initial value 4
DCD 5 ;create variable S with initial value 5
END

Figure Example 4.1 shows the state of the system after the program has been loaded.

I have to admit, that | would not write this code as it is presented. It is far too verbose. However, it does illustrate
several concepts.

First, the instruction ADR r4, TheData loads the address of the data region (that we have labelled TheData into
register r4. That is, r4 is pointing at the data area. If you look at the code, we have reserved four bytes for P and then
have loaded the values for Q, R and S into consecutive word location. Note that we have not labelled any of these
locations.

The instruction ADR (load an address into a register) is a pseudoinstruction. If you look at the actual disassembled code
in Figure Example 4.1 you will see that this instruction is translated into ADD r4, pc, #0x18. Instead of loading the
actual address of TheData into r4 it is loading the PC plus an offset that will give the appropriate value. Fortunately,
programmers can sleep soundly without worrying about how the ARM is going to translate an ADR into actual code —
that’s the beauty of pseudoinstructions.

When we load Q into rl we use LDR rl, [r4, #Q]. Thisisan ARM load register instruction with a literal offset;
that is, Q. If you look at the EQU region, Q is equated to 4 and therefore register rl is loaded with the data value that is
4 bytes on from where r4 is pointing. This location is, of course, where the data corresponding to Q has been stored.

Alan Clements ARM simulator notes Page 12

Figure Example 4.1 The state of the system after loading the program

\CengageEdition_2\StructuredARMexamples \Example4_ADDITIONC.uvproj - pVisiond - |EI|5|
File Edit Wiew Project Flash Debug Peripherals Tools 35VCS Window Help
DI Y E) st Re o[
PO wro o > OReElE & oW -
|Registers a x| Disassembly a x|
Register I\r‘alue | 3: ADR r4,ThelData ;r4 points to the data area ﬂ
= Ca i E:}OHODOOGODO E28F4018 ADD R4,PC, #0x00000018
- AD 00000000 4: LDR rl, [r4, #Q1 sload @ into rl
R 00000000 0x00000004 ESS41004 LDR R1, [Rﬂ,#ﬂx{l{_}ﬂ&]
R 00000000 H LDR r2, [r4,#R] yload R into r2
B3 00000000 0x00000008 ES5942008 LOR R2, [R4, $0x0008]
R4 00000000 a: LDR r3, [r4,#5] yload 5 into r3
A5 00000000 0x0000000C ES594300C LDR R3, [R4, #0x000C]
- RE 00000000 T: ADD rO,rl,r2 sadd §@ and R
A7 00000000 0x00000010 EO0810002 ADD RO,R1,R2
R 00000000 8: DD r0,r0,r3 sadd 5 to the total
RS9 00000000 0x00000014 EOQOB00003 ADD EO,RD,R3
CRI0 i} 0003:}018 ESBQEESO égélré'#P]RO ;::ve Fas messE I memeny
R 00000000 b B . : - [R4]
CR1Z MDDDDDDDD[II]I][II]I][ID a GOOO(.]G:LE:OPEAFFFFFE Bmp 0x0000001C
CRI3ER) 0800000020 00000000 ANDE RE; RO, RO
- R14(LR) 00000000 * Q roor
00000000 0x00000024 00000002 ANDEQ RO,RO,R2
o T Swwws |[forosnonoe osoonoos am 0,20,Rs |
- 5PSR 00000000 * Q o i
- User/System KN 2
[Fast Intemupt - X
[
E o Example4, CODE, READWRITE —
[02 =
£ 03 ADR r4,TheData ird p data area
04 LDR rl, [rd,#{] ;load
00000000 05 LDR r2, [r4, #R] :load
Supervisor 08 LDR r3, [r4,#5] :load
0 07 ADD r0,rl, r2 sadd
0.00000000 08 ADD r0, r0, 3 sadd
09 STR r0, [r4, 3F] ;save memory
10 Stop B Stop
11
12 B EQU 0 ;offset for P
130 EQU 4 joffsst for ¢
14 R EQU 8 ;offset for R
15 5 EQU 12 ;offset for S
16
17 LRER Example4d4, CCDE, READWRITE
18 TheData SPACE 4 :save one word of storage for P
19 DCD 2 ;create variable § with initial walue 2
20 DCD 4 ;sereate variable R with itizl walue 4
21 DCOD 5 ;ocreate varisble £ with initial walus § b
22 END -
[l Project | 5 Registers | ‘-l | d
|Memu|]r1 a X|
-
Address: Ifl |'r' j
0x00000000: E2 40 18 E5 94 10 04 E5 94 20 08 E5 94 30 OC EO 81 00 02 EO 80 00 03 E5 84 00 00 EA4 FF FF
0x0000001F: FE 00 00 00 OO0 QO 00 02 0O 00 OO0 04 00 OO OO0 O5 OO 00 00 OO 00 00 OO 00 00 OO 00 OO 00 00
0x0000003E: 00 00 00 OO0 00 OO OO OO0 OO OO OO0 OO OO OO0 OO 00 OO0 OO 00 OO0 OO0 OO0 00 OO0 OO0 0O OO0 OO0 00 OO
AR TaTalalalalal-Sn I Tal AN _nNn. Nonn nan an a0 On 00 Ao % a0 an an a0 AN an 0o an a0 00 an a0 an 0o oo Ao a0 a0 ;I
';lg:l'lCaII Stack + Locals Memary 1
|[simulation | »

e —
Alan Clements ARM simulator notes Page 13

Figure Example 4.2 The state of the system after executing the program

\CengageEdition_2\StructuredARMexamples \Example4_ADDITIONC.uvproj - pVisiond - |EI|5|
File Edit Wiew Project Flash Debug Peripherals Tools 35VCS Window Help
=1 - I - PR EN g - Qe o& [
PO wro o > OReElE & oW -
|Registers a x||Disassembl1r a x|
Register I\r‘alue | 3: ADR r4,ThelData ;r4 points to the data area ;I
= Ca i 0x00000000 EZ28F4018 ADD R4, PC, #0x00000018
R B il 0003:}004 ESBﬂiggﬂ i;;{qu,#Q]Rﬂ. ;;ZE:GQO;EZD Il
R 00000002 * - [R%, #0x0004]
—R2 00000004 5: LDR r2, [r4,#R] ;load R into r2
R 300000005 0x00000008 ES5942008 LDR R2, [R4, $0x0008]
R4 00000020 a: LDR r3, [r4,#5] yload 5 into r3
A5 00000000 OXOOOSOOOC E594§E§C LER - B3, [Rcﬂié#ﬂxOOgC:{
e 00000000) 0000(‘]010 EQO810002 ;D]E)I . RO l’ii RQQ =
SR B g8: ADD 0,r0,r3 " Eid 5 to the total
- RE 00000000 : r0,rd, r ra o e tota
RS9 00000000 0x00000014 EOQOB00003 ADD EO,RD,R3
CRI0 £x00000000 o 0003(:]018 Essﬂgzgo ;gé[ﬂ'ﬂ]ao ;:Zve Fas messE I memeny
-~ R11 00000000 = e 13 : - [R4]
CR1Z 0 GDOO(IJG:L;DPEAFFFFFE Btop 0x0000001C
- R13(5P) 00000000 0x =
. 0=x00000020 OQO00000B ANDEQ RO,RO,R11
0x00000024 00000002 ANDEQ RO,RO,R2
| R
- 5PSR (00000000 * Q reer i
B User/System 2
E:I """ Fast Intemupt - X
E 01 BAREXR Example4, CODE, READWRITE —
[02 ENTRY I—
[03 | LDR rd4,TheData ;¥4 p data arsa
04 LDR rl, [rd,#{] ;load
:0000001C 05 LDR r2, [r4, #R] :load
Supervisor 05 LDR r3, [r4,%5] :load
14 o7 ADD r0, rl, 2 ;add
0.00000000 08 ADD r0, r0, 3 sadd
09 STR r0, [r4, 3F] ;save memory
310 Stop B Stop
1
12 B EQU 0 ;offset for P
130 EQU 4 joffsst for ¢
14 R EQU 8 ;offset for R
15 5 EQU 12 ;offset for S
16
17 LRER Example4d4, CCDE, READWRITE
18 TheData SPACE 4 :save one word of storage for P
19 DCD 2 ;create variable § with initial walue 2
20 DCD 4 ;sereate variable R with itizl walue 4
21 DCOD 5 ;ocreate varisble £ with initial walus § b
22 END -
[l Project | 5 Registers | ‘-l | d
|Memu|]r1 a X|
-
Address: Ifl |'r' j
0x00000000: E2 40 18 E5 94 10 04 E5 94 20 08 E5 94 30 OC EO 81 00 02 EO 80 00 03 E5 84 00 00 EA4 FF FF
0x0000001F: FE 00O OO 0O OE OO QO 00 02 00 00 OO 04 0O OO OO0 05 OO0 00 00 OO 00 00 OO 00 00 OO0 00 OO0 00 00
0x0000003E: 00 00 00 OO0 00 OO OO OO0 OO OO OO0 OO OO OO0 OO 00 OO0 OO 00 OO0 OO0 OO0 00 OO0 OO0 0O OO0 OO0 00 OO
AR TaTalalalalal-Sn I Tal AN _nNn. Nonn nan an a0 On 00 Ao % a0 an an a0 AN an 0o an a0 00 an a0 an 0o oo Ao a0 a0 ;I
';lg:l'lCaII Stack + Locals Memary 1
|[simulation | »

e —
Alan Clements ARM simulator notes Page 14

Example 5 ADDITION

We’re going to repeat the same example once again. This time we will write the program in a more compact fashion,
still using the ADR (load register with address instruction).

To simplify the code, we’ve used simple numeric offsets (because there is relatively little data and the user comments
tell us what’s happening. Note that we have used labels Q, R, and S for the data. These labels are redundant and are not
needed since they are not referred to anywhere else in the program. There’s nothing wrong with this. These labels just
serve as a reminder to the programmer.

AREA Exampleb, CODE, READWRITE

ENTRY

ADR r0,P ;rd4d points to the data area
LDR rl, [r0, #4] ;load Q into rl

LDR r2, [r0, #8] ;load R into r2

ADD r2,rl,r2 ;add Q and R

LDR rl, [r0,#12] ;load S into r3

ADD r2,r2,rl ;add S to the total

STR rl, [r2] ;save the result in memory
Stop B Stop

AREA Example5, CODE, READWRITE

P SPACE 4 ;save one word of storage for P

0 DCD 2 ;create variable Q with initial value 2

R DCD 4 ;create variable R with initial value 4

S DCD 5 ;create variable S with initial wvalue 5
END

Note also that we have reused registers to avoid taking up so many. This example uses only r0, r1, and r2. Once a
register has been used (and its value plays no further part in a program, it can be reused. However, this can make
debugging harder. In this example at one point rl contains Q and at another point it contains S. Finally, it contains the
result S.

Figure Example 5.1 gives a snapshot of the system after the program has been loaded, and Figure Example 5.2 shows
the state after the program has been executed.

Alan Clements ARM simulator notes Page 15

Figure Example 5.1 The state of the system before executing the program

\CengageEdition_2\StructuredARMexamples\Example5_ADDITIONd.uvproj - pVisiond 1ol
File Edit Wiew Project Flash Debug Peripherals Tools 5VCS Window Help
D@ » oa "R N] - @e c&[E]
xBO Bron > aRBEla-] el HEME
|Registels 1 X||Disassemb|1r a X|
Redister I\Palue 3: LDR rd, P ;r4 points to the data area 3
Ee i E:)DKOOODOOOD EZ2EF0018 ADD RO, PC, #0x00000018
RD 00000000 4: LDR rl, [=0,#4] ;load @ into rl
= 00000000 0x00000004 ES901004 LDR R1, [RO, #0x0004]
2 00000000 5: LDR rz, [r0, #8] sload R into r2
- R3 00000000 0x00000008 ES5902008 LDR R2, [RO, #0x0008]
R4 00000000 [LDD rZ2,rl, r2 sadd @ and R
RE 00000000 0x0000000C EOQ812002 ADD R2,R1,R2
- RE 00000000 - LDR rl, [r0,#12] ;load 5 into r3
BT 300000000 0x00000010 ES550100C LDR R1, [RO, $0x000C]
—Ra 00000000 8: ADD r2,r2,rl sadd 5 to the total
Y 00000000 0x00000014 EOQE22001 ADD EZ2,RZ,R1
R0 00000000 9: STR rl, [r0] szave the result in memory
R{1 00000000 0x00000018 ES801000 STR R1, [RO]
12 00000000 10: Stop B Stop
~R13{SP} 00000000 0x0000001C EAFFFFFE B 0x0000001C
CRIALA) 300000000 0x00000020 00000000 ANDEQ RO, RO, RO
~RI5{PC) 00000000 0x00000024 00000002 ANDEQ RO,RO,R2
El-CPSR 00000003 0x00000028 00000004 ANDEQ RO,RO,R4
B SPSR 00000000 0x0000002C 00000005 ANDEQ RO,RO,RS -
[User/System _’l_l
B Fast Intemupt
B Intemupt Example5_ADDITION.s - X
[Supervisor LRER ExampleS, CCDE, READWRITE =
[l Abort ENTERY I
- Undefined =03 ADR r0,F ;ré points to the data area
Bl Intemal 04 LDR rl, [0, 4] ;lead ¢ into rl
00000000 05 LDR r2, [rD, #3] ;load R into r2
Supervisor 06 ADD r2,rl, r2 ;add @ and R
0 o7 LDR rl, [rD,$#12] :load S inte r3
0.00000000 04 ADD r2, r2, rl ;add S to the total
09 STE rl, [rD] ;53ve the result in memory
10 Stop B Stop
11
12 ARER ExampleS, CCDE, READWRITE
13 F SPLCE 4 ;save one word of storage for P
14 G DCD 2 joreate variable O with initial walus 2
15 R DCOD 4 ;ereate variable R with initial walus 4
16 5 DCD 5 sorsate varisbls S with itizl walus 5 —
17 END -
-
[E] Project | = Registers | 4 i I —'l—l
|Memury1
Address: [0
0x00000000: E2 BF 00 18 E5 S0 10 04 E5 90 20 08 EQ 81 20 02 E5 S0 10 OC EO 82 20 01 E5 80 10 00 En FF FF
0x0000001F: FE OO0 0O OO0 OO 0O OO OO 02 0O OO OO 04 00 OO0 OO O5 OO0 OO 00 OO OO0 OO0 OO0 OO0 OO0 00 OO0 OO0 00 0O
0x0QQ00003E: 00 00 0O 00 OO 0O OO 0O 00 OO OO 0O OO 00 OO0 OC 00 OO0 OO 00 OO 00 00 0O 00 00 00 00 00 00 0O LI

@ Call Stack + Locals

|[simulation | 4

e ——
Alan Clements ARM simulator notes

Page 16

Figure Example 5.2 The state of the system after executing the program

\CengageEdition_2\StructuredARMexamples\Example5_ADDITIONd.uvproj - pVisiond - |EI|5|
File Edit Wiew Project Flash Debug Peripherals Tools 35VCS Window Help
NEda|: o5 R e - @e o calE]
PO wro o > OReElE & oW -
|Registers 1 X||Disassemb|1r a x|
Register I\r‘alue 3: ADR rd, P ;r4 point=s to the data area ﬂ
= Ca i Ox00000000 EZ2BFO0018 ADD RO, PC, #0x00000018
R 00000005 (4] 000:{:1004 ESBOEEEQ E;;{lro’#QIRﬂ. ;;EE:OQOESZU Il
Al B 5 LDR 2 o, %8 '!1 'd: i : 2
—R2 00000008 H 2, [0, #8] rloa into r
B3 300000000 ox00000008 ES902008 LDR RZ, [RO, $0x0008]
R4 00000000 [°H ADD r2,rl,r2 radd Q and R
RE 00000000 0x0000000C EOQE12002 ADD R2,R1,R2
e] 000;;010 ESBOEEEC ii;{lrat#lzllil ;;EE:OSO;EEO =
SR £x00000000 B a: ADD 2,r2, 7l '! d;i Sxt tr]1 total
RS 00000000 H e, T, 0 =t lal e tota
RY 00000000 0x00000014 EQE22001 ADD E2,RZ,R1
CRIO (4] 0003;}018 ESBOiEEO ;;;{[IO] R1 ;:gve TS messE n memesy
R 00000000 b B B s » [RO]
CR1Z 00000000 0 OGDO&JOJ.EOPEAFFFFFE BEOEI 0x0000001C
CRI3ER) 00000000 0300000020 00000005 ANDE Rf; RO,RS
CRIALR) 000000 0300000024 00000002 ANDEQ RO'R0‘R2
0 |]|]|]|]|][|1C 0x00000028 00000004 ANDEQ RD'R0’R4
f- CPSR D3 OKOOOOOO2C 00000005 ANDEQ RO'R0‘R5
- 5PSR 00000000 EORHELLSL DRHREEES "_“__9 L =
[User/System 4
[Fast Intemupt
i Example5_ADDITION.s v X
£ ARER ExampleS, CCDE, READWRITE =
B ENTRY —
[ADR r0, P data ares
LDR rl, [r0, #4]
LDR r2, [r0,#3]
ADD r2,rl,r2
LDR rl, [rD,%12]
ADD r2, r2, rl
S5TR rl, [rD] mEmMory
Stop B Stop
LRERL Example5, CODE, READWRITE
i3 F SPACE 4 ;save one word of storage for P
14 Q DCD 2 ;oreate variable Q with initial walue 2
i5 E DChD 4 screate variable R with initial valus 4
16 5 DCOD 5 ;sorsate variable S with itial valus & —
17 END
L 1 vI
[Project | = Registers I 4 i I L4
|Memul}'1 a X|
-
Address: |Cl iP j
0x0Q0000000: E2 B8F 00 18 ES 90 10 04 ES 90 20 08 EQ 81 20 02 ES5 90 10 OC EOQ 82 20 01 E5 &0 10 00 EA FF FF
0x0000001F: FE OO0 0O 0O O5 0O 0O OO 02 0O OO0 00 04 00 OO OO O5 00 OO 00 OO OO OO0 OO OO0 OO0 0O OO0 OO 00 OO
0x0Q000003E: 00 00 0O 00 OO 0O OO OO 00 0O OO0 OO0 OO 00 OO0 OO OO0 OO0 OO 00 OO 00 00 00 00 00 00 00 OO0 00 00 LI
@ Call Stack + Locals
||simulation | 4

Summary — Example 1 to 5

Programs using the Keil ARM IDE begin with a line like AREA nameOfProg, CODE, READONLY and end with

END.

Alan Clements ARM simulator notes

Page 17

e You can store data in memory with the DCD (define constant) before the program runs.

e Youcanwrite ADD x0,r1, #4 or ADD x0, r1,K1.However, if you do use a symbolic name like K1, you
have to use an EQU statement to equate it (link it) to its actual value.

e Some instructions are pseudoinstructions. They are not actual ARM instructions but a form of shorthand that is
automatically translated into one or more ARM instructions.

e Theinstruction MOV rl,r2 orMOV rl, #literal hastwo operands and moves the contents of a register
or a literal into a register.

Alan Clements ARM simulator notes Page 18

Example 6 Arithmetic Expressions
The problem

We are going to perform a more complex arithmetic evaluation. Assume that we wish to evaluate (A + 8B + 7C - 27)/4,
where A=25,B =19, and C = 99.

The Code

We will use literals in this simple example. Note that the ARM has a multiply instruction but no divide instruction.

MOV r0, #25 ;Load register r0 with A which is 25

MOV rl, #19 ;Load register rl with B which is 19

ADD r0,r0,rl,LSL #3 ;Add 8 x B to A in r0

MOV rl, #99 ;Load register rl with C which is 99 (reuse of rl)
MOV r2,#7 ;Load register r2 with 7

MLA r0,rl,r2,r0 ;Add 7 x C to total in x0

SUB r0,r0,#27 ;Subtract 27 from the total

MOV r0,r0,ASR #2 ;Divide the total by 4

There are two several to note. First, was can multiply or divide by a power-of-2 by shifting left, or right, respectively.
Moreover, instructions allow us to perform a shift on the second operand, so that ADD r0, r0, r1, LSL #3 means
shift the contents of register r1 left three times (multiply it by 8) and then add it to register r0 and put the total in r0.

Second, we can use the add and multiply instruction, MLA, to perform P = P + Q-R. In this case we are able to perform
the multiplication 7 x C and add that to the running total in rO. Note the format of this instruction.

Finally, we perform the division by 4 moving the result from r0 to rO while applying two shifts right. Figure Example
6.1 demonstrates the state of the system after the code has been executed.

Figure Example 6.1 The state of the system after executing the program

IEI E:\CengageEdition_2\Structured ARMexamples)\Example6_Expressions.uvproj - pVisiond I] [
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help
NEFEIPETIEE r F) -Re@le s [@] A
RWEHO BP0y DRBEGRE-O-3-8-3 -8 x-
Registers 1 x Example6.s] v X
Register Value - o ARER Example6, CODE, READWRITE ZI
02 ENTRY
- 00000002 03 MOV r0, %25 h A which is 25
....... R1 00000063 04 MOV rl,#19 B ith B which 1s 19
....... R (00000007 05 ADD r0,r0,rl,LSL #3 :a
------- R3 00000000 0] MOV rl, #3939 C which is 99 (reuse of ri}
------- R4 00000000 o7 MOV r2,#7
------- R5 (00000000 08 MLA r0,rl,r2,r0 x0
------- RE (00000000 09 SUB r0,r0,#27
------- 7 (00000000 10 MOV r0,r0,ASR %2
------- R8 B00000000 — |||RP11 S B 5
------- R9 (00000000 12 END
"""" R10 (00000000 13
"""" R11 (00000000 14
"""" R12 (00000000
"""" R13 (5F) (00000000
"""" R14 (LR} (00000000

||Simu|ation ”l A

Alan Clements ARM simulator notes Page 19

Example 7 Logical Operations

Logical operations are virtually the same as arithmetic operations from the programmer’s point of view. The principal
differences being that logical operations do not create a carry-out (apart from shift operations), and you don’t have to
worry about negative numbers. Logical operations are called bitwise because they act on individual bits. Basic or
fundamental logical operations are:

NOT Invert bits Ci=a
AND Logical and Ci = aih;
OR Logical OR cGi=a+b

Derived logical operations that can be expressed in terms of fundaments operations are (this is not an exhaustive list):

XOR Exclusive OR ci:ibﬁaiﬁ

NAND NOT AND Ci = a;°b;
NOR NOT OR Ci=a + Db

Shift operations are sometimes groups with logical operations and sometime they are not. This is because they are not
fundamental Boolean operations but they are operations on bits. A shift operation moves all the bits of a word one or
more places left or right. Typical shift operations are:

LSL Logical shift left Shift the bits left. A 0 enters at the right hand position and the bit in the left hand
position is copied into the carry bit.

LSR Logical shift right Shift the bits right. A 0 enters at the left hand position and the bit in the right hand
position is copied into the carry bit.

ROL Rotate left Shift the bits left. The bit shifted out of the left hand position is copied into the right
hand position. No bit is lost.

ROR Rotate right Shift the bits right. The bit shifted out of the right hand position is copied into the left

hand position. No bit is lost.

Some microprocessors include other logical operations. These aren’t needed and can be synthesized using other
operations.

Bit Set The bit set operation allows you to set bit i of a word to 1.
Bit Clear The bit clear operation allows you to clear bit i of a word to 0.
Bit Toggle The bit toggle operation allows you to complement bit i of a word to its complement.

ARM Logical Operations

Few microprocessors implement all the above logical operations. Some microprocessors implement special-purpose
logical operations as we shall see. The ARM’s logical operations are:

MVN MVN r0,rl r0=rl
AND AND rO0,rl,r2 r0=rl-r2
ORR OR r0,rl,r2 r0=rl1+r2
EOR XOR r0,rl,r2 N=rl®dr2
BIC BIC r0,rl,r2 r0=rl-r2

LSL MOV r0,rl,LSL r2 rl is shifted left by the number of places in r2
LSR MOV r0,rl,LSR r2 rl is shifted right by the number of places in r2

The two unusual instructions are MVN (move negated) and BIC (clear bits). The move negated instruction acts rather
like a move instruction (MOV), except that the bits are inverted. Note that the bits in the source register remain
unchanged. The BIC instruction clears bits of the first operands when bits of the destination operand are set. This
operation is equivalent to an AND between the first and negated second operand. For example, in 8 bits the operation
BIC r0,rl,r2 (withrl=00001111andr2=11001010)would resultin r0 =11000000. This instruction is
sometimes called clear ones corresponding.

The problem
Let’s perform a simple Boolean operation to calculate the bitwise calculation of F = A-B + CD.
Assume that A, B, C, D are in rd, r2, r3, r4, respectively.

Alan Clements ARM simulator notes Page 20

The Code

AND r0,rl,r2 ;fO=AB
AND r3,r3,r4 3=C-D
MVN r3,r3 r3=C-D
ORR r0,r0,r3 10=AB+CD

Figure Example 7.1 gives a snapshot of the state of this program after execution. There are several points of interest.
First, we have used the pseudo instruction LDR rl,=2 0000000011111111010101011110000 to load a
binary literal into register r1.

The ARM cannot load a 32-bit constant in a single instruction (since an instruction itself is 32 bits wide). The

LDR r1,=format generate a program counter relative load and the assembler automatically puts the constant in
memory at a suitable point. Note the format of a base two number. Itis 2xxxx..x where the 2 indicates binary and
the x’s are bits.

Figure Example 7.1 The state of the system after executing the program

|§| E:\CengageEdition_2\StructuredARMexamples\Example7_LOgicalOps.uvproj - pVisiond - |I:I|l|
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help
REEFIEE EEE G| - @e ce @A
‘EEHO B0 v @ TRBE-E-[D]3-8-a-m- x|
|Registers '3 X||Disassemb|y I X|
Register |Va|ue | 3: [LDR rl,=2 00000000111111111010101011110000)¢ :setup & B
px00000000 ES9F101C [LDR R1, [PC, #0x001C] | .
= 4: LDR r2,=2_0000000000000000001 011111111 ;setup A load constant (literal)
0x00000004 ES9F201C LDR R2, [PC, #0x001C] pseudomstructlon
5: LDR r3,=2_1100011111111111111111111111 1 ;setup C
ox00000008 ES9F301C LDR R3, [PC, #0x001C] I
6: LDR r4,=2 11110011111111111111111111111111 e D
e - The actual code
0x0000000C E59F401C LDR R4, [PC, #0x001C] generated by the
g: AND r0,rl,r2 ;0 = B.B 3 A
ox00000010 E0010002 AND RO,R1,R2 pSEUdOIﬂStI’UCtIOI’]
9: AND r3,r3,r4 ;x3 = C.D
0x00000014 E0033004 AND R3,R3,R4
10: MVN r3,r3 :r3 = NOT(C.D)
ox00000018 E1E03003 MVN R3,R3
11: ORR r0,r0,r3 ;r0 = B.B + NOT(C.D)
ox0000001C E1200003 ORR RO,RO,R3
12: Loop B Loop ;5top here
50x00000020 EAFFFFFE B 0x00000020

0x00000024 O0OFFAAFO (272)EQ

0x00000028 00002AFF ??7EQ

0x0000002C CTFFFFFF ?27GT

0x00000030 F3FFFFFF (27?)

0x00000034 00000000 ANDEQ RO, RO, RO -

4| »
] Example7. - X
Bl Intemal e
(00000020 o1 AREA Example7, CCDE, READCHNLY =
Supervisor 02 ENTRY i—
16 03 LDR rl,=2_00000000111111111010101011110000 :setup A
0.00000000 04 LDR r2,=2_00000000000000000010101011111111 ;setup B
05 LDR I‘3,=2_110CIO'I'|'I ssetup ©
: 06 LDE r4,=2 1111001111111111131113111311111111 :setup D
The constant automatically - i .
loaded into memory that is 08 AND r0,r1,T2 .

03 AND r3,r3,r4 This is the core of the program that
accessed by the ARM load 10 ol sEliaE) erforms the logical calculation
Instruction. 11 ORR r0,r0,r3 P 9

512 foop B Loon
13
14 END -
=l Project | = Register I‘ I I LI_I
N\
|Memory1 \ 7 X|

AN

-
Address: |1]I \ j
Ox00000000: E5 SF 10 ISES5 SF 20 1C E5 SF 30 1C E5 SF 40 1C EO 01 00 02 EO 03 30 04 E1 EO 30 03 E1 20 00 03 EA FF
0x00000022: FF FE|OO0O FF &A& FO 00 00 2A FF C7 FF FF FF F2 FF FF FF 00 00 00 00 00 00 OO0 OO0 00 OO0 OO0 00 00 00 00 00

0x00000044: 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 LI

||5imu|ation ”l A

Alan Clements ARM simulator notes Page 21

Example 8 A More Complex Logical Operation

Suppose we have three words P, Q and R. We are going to apply logical operations to subfields (bit fields) of these
registers. We’ll use 16-bit arithmetic for simplicity.

Suppose that we have three 6-bit bit fields in Q, R, and R as illustrated below. The bit fields are in red and are not in the
same position in each word. A bit field is a consecutive sequence of bits that forms a logic entity. Often they are data
fields packed in a register, or they may be graphical elements in a display (a row of pixels). However, the following
example demonstrates the type of operation you may have to perform on bits.

P = P15 P14 P13 P12 P11 P10 Po Pe P7 Ps Ps P4 P3 P2 P1 P = 0010000011110010

Q =015 914 913 G12 011 910 9o 9s 7 U6 CJ5 0Ja O3 02 1 o = 0011000011110000
R=r5ralialpli Mol g M7 e M54 l3la M1 g =1100010011111000

In this example we are going to calculate F = (P + Q @ R) - 111110 using the three 6-bit bit fields.

Assuming that P, Q, and R are in registers r1, r2, and r3, respectively, we first have to isolate the required bit fields.
Since we are going to assume that the original data is in memory, it doesn’t matter if we modify these registers. In each
case we use a move instruction and right shift the register by the number of placed required to right-justify the bit field.

MOV rl,rl,LSR #9 ;right justify P
MOV r2,r2,LSR #1 ;right justify Q
MOV r3,r3,LSR #5 ;right justify R

We now have

P=0000000000 Py Py Pis Pro P ProPs = 0000000000010000
Q =0 015 014 G13 912 Y11 010 Go ds G7 G U5 da O3 92 g1 = 0001100001111000
R=00000 Mg lg 13l M1 Mol lfigli7 g I's =0000011000100111

We also want to ensure that all the other bits of each register are zero. We can use a logical AND operation for this.
Note that 0x3F is the 6-bit mask 111111. We could have used 2_111111

AND rl,rl, #0x3F ;convert P to six significant bits right-justified
AND r2,r2,#0x3F ;do Q
AND r3,r3,#0x3F doR

The now leaves us with

P=0000000000 P14 P13 P12 P11 P10 Po =0000000000010000
Q=0000000000060504 030> 01 =0000000000111000
R=0000000000rygrgrgrsrgrs =0000000000100111

Now we can do the calculation.

EOR r2,r2,r3 ;Calculate Q ® R
ORR r2,r2,rl ;Logical OR withrltoget (P+Q @ R)
AND r3,r3,#0x3E ;And with 111110toget (P+Q @ R) - 111110

Figure Example 8.1 gives a snapshot of the screen after we’ve run this program. Note the final code. After each
operation, we put the result in a new register. You would not do this in practice; you would reuse registers. We’ve done
this because you can see all intermediate results from the final snapshot of the program and that make debugging very
easy.

]
Alan Clements ARM simulator notes Page 22

Figure Example 8.1 The state of the system after executing the program

'g,(. \Cengagetdition_2 | Structured ARMexamples \Examples_LogicalOps.uvprog - p¥isond mg
Dle Est iew Frojedt Figsh Debug Pegphenls Jools IVCS Window Meip
T IR x>0 00 .o @e caTy
ZEERO PN > NAFELS-0-3-8-0-8- »-
[Registen 3 x| :Er:,.--zy:,-A---' ogiaOpts S
_ | Koo e
Regater Ve L [ARER ExanpleS, CODE, READONLY =
= Cumrent @ ENTRY —
RO O0000000 w5
R1 00000000 2ot | 1D8 r1,=2_0010000011110010 :sat up P
A2 00000000 s LDR T2,=2 110000 saat wp G
R D0000000 06 DR T3, =2_ 11111000 set up R
Re 00000000 o7
RS (00000000 8 WOV rd,rl1, LSR 35 rright Justify P
RE 00000000] BW T3, r2 LSR 21 -
R7 (00000000 30 MOV r6,r3, LSR 35
RE 00000001 n
A3 00000000 12 AND ¥7,v4, 30x5F sconvert P to six sagmaificant bits right-justified
A10 ooooooooo || 13 AND T8, rS,$043F rdo @
RN 00000000 " AND r9,v6,#0X3F doc R
R12 000000000 15
R13 (57} 0000000 16 EOR ri10,v8,r9
RI4AA Dd0000000 N7 ORR ¥11,¢7,r10 ith P to get (F + O ZOR 1)
RISFC) GDI000NN0 18 AND r12, 111, $0%5E ot (B 208 1) . 111110
% CPSR 0xD0000003 18
*- SPSR O0000000 20 loop B Locp :5top hars =
J & User/Svatem hd 2 ENT =
mf'-:‘y':' ‘!mtbl I‘I I _’J-'

! simuiation Jits: o 000006,

We now demonstrate that you can simplify this code. We perform the same action but reuse registers. Moreover, we
will do not bother truncating registers to six bits because we can perform that operation when we carry out the final

AND with 1111110. You could not do this with numeric values, but you can with logical values because there is no
carry out between columns. Figure Example 8.2 demonstrates that we get the same result.

AREA Example8, CODE, READONLY

ENTRY ;Calculate F=(P+Q ® R) - 111110
LDR rl,=2 0010000011110010 ;LoadP

LDR r2,=2 0011000011110000 ;LoadQ

LDR r3,=2 1100010011111000 ;LoadR

MOV r2,r2,LSR #1 ; Right justify Q one place

EOR r2,r2,rl, LSR #5 ; Calculate Q EOR R (and right justify R five places)

ORR r2,r2,rl, LSR #9 ; Logical OR with P to get (P + Q EOR R)

AND r2,r2,#0x3F ; AND with 111110 to get (P + Q EOR R).111110
Loop B Loop ; Stop here

END

Figure Example 8.2 The state of the system after executing the simplified program

"l_.t \Cengagetdition_2\Structured ARMexamples \Lxample#_LogicalOpsil T.uvprog - y¥isond — l'ﬂl.’.g

Die Edt Yeew Project Figsh Debug Feripherals fools $VCS Window Heip
S . XEMS - @e calm]A

RO BFD v dAFELS-0- 3-8 0 W -

Registess 3 X (3] Examples LogicalOpsALTs | v x
Regeter | Vo= S ED AREA Examplef ALT, CODE, READOMLY ﬂ
= Cusrent 2 INTRY sCalculate F P+ Q ECA R).2111110

RO G00000000 LDR rl,'i_ED’.C'OC-DO‘. 110010 :lo
R1 DO00020F2 LDR r2,=2_00110

LDR r3,=2_ 1100010
R3 O000CEF2 MOV r2,r2,LSR #1
Re DD0000000 7 EOR r2,rZ,r3, LSR #& places)
RS D00002000 ORB r2,r2,rl, LSR #2 i £y
RE D00002000 AND 1r2,r2,$0x3E
R7 Q00000000 F10 Locp B Loop
RE a0 ~ 1 N £NE
- 00000000 12
R10 Q0000000 13
A1t (00000000
R12 00000000
R13(59) 00000000
R14 (LA} Q00000000

-l l

| simufation I oco000C

Alan Clements ARM simulator notes Page 23

Example 9 Conditional Expressions TO BE COMPLETED

]
Alan Clements ARM simulator notes Page 24

