Clements

Computer Organization
COMPUTER and Architecture

ORGANIZATION

AND
ARCHITECTURE

Computer Organization and Architecture: Themes and Variations, 15 Edition

® Chapter 3

Alan Clements

~ » CENGAGE

' .
%= Learning

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

THE INSTRUCTION SET ARCHITECTURE

In this set of lectures, we:

examine the stored program machine and show how an
Iinstruction 1s executed

introduce instruction formats for memory-to-memory,
register-to-memory, and register-to-register operations
demonstrate how a processor implements conditional
behavior by selecting one of two alternative actions
depending on the result of a test

describe a set of computer instructions and show how
computers access data (addressing modes)

introduce ARM’s development system and show how
ARM programs are written

demonstrate how the ARM uses conditional execution to
1mplement efficient code.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Figure 3.1 illustrate the structure of a simple hypothetical stored program computer.
The CPU reads instructions from memory and executes them.
Temporary data is stored in registers such as r1 and r2. The PC, program counter, 1s

the register that steps through the program. That is, the PC points at the next
instruction to be executed.

FIGURE 3.1 Fundamental structure of a computer

Central processing unit (CPU)

Registers

Control unit 2 3

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Computer Architecture

The word architecture in the expression computer architecture is
analogous to the same word in the world of building because it
indicates structure and implies design and planning. Computer
architecture describes the structure of a computer from the
perspective of the programmer or compiler writer rather than that of
the electronic engineer.

The origins of computer architecture go back to the early 1960s when
each new computer was different from its predecessors and had a
unique instruction set. IBM changed computing with the System/360
series, which had a common architecture and instruction set across all
models. Each model executed the same instructions, so you could
upgrade from a low-cost machine without having to rewrite all your
programs. In 1964, this was a radical notion. Forty years later, it is
common practice.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Instruction Formats
A computer executes instructions from 8 bits wide to 80 bits wide.

The instruction format defines the anatomy of an instruction (the
number of bits devoted to defining the operation, the number of
operands, and the format of operands).

Consider the following examples of instructions. The examples in
red show how an instruction might be described in words and
below are several examples of actual instructions.

e el 10
aE e B 00
A el
clE ekl]

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Features

A stored program machine is a computer that has a program in digital
form in 1ts main memory. The program counter points to the next
instruction to be executed and is incremented after each instruction has
been executed.

The program and data are stored in the same memory.

A stored program operates in a fetch/execute two-phase mode. In the
fetch phase the next instruction is read from memory and decoded.

In the execute phase the instruction is interpreted or executed by the
CPU'’s logic.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

A stored program computer has several registers.

MAR

MBR

PC

10 - 7

The memory address register stores the address of the location in main
memory that is currently being accessed by a read or write operation.

The memory buffer register stores data that has just been read from
main memory, or data to be immediately written to main memory.

The program counter contains the address of the next instruction to be
executed. Thus, the PC points to the location in memory that holds the
next instruction.

The instruction register stores the instruction most recently read from
main memory. This is the instruction currently being executed.

The register file is a set of eight general-purpose registers r0, rl, r2, ...,
r7 that store temporary (working) data, for example, the intermediate
results of calculations. A computer requires at least one general-
purpose register. Our simple computer has eight general-purpose
registers.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

We are going to use the ARM processor to introduce assembly language and a
modern ISA. However, we begin with the description of a very simple
hypothetical computer to keep things simple.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

m Partial structure of a hypothetical stored program machine
PC MAR

Program Counter g | N Memory address register S tructure Of a
™~ The memory address C O mp uter

register gets an address
from the PC or the IR

Incrementer

Address path

The operands field of ;
the instruction provides Data path I ala
any source and destination between memory Data path

operands required by the and registers
instruction SR IR — Data moves from memory
- to MBR in a read cycle and

Op-code Operands Memory buffer register from MBR to memory in a
2 | write cycle.

CcuU Register File
Path taken by the

instruction when it is Register r0
fetched from memory

Register r1

Path for data flowing
between memory Register r7
(via the MBR), the

registers, and the ALU

Arithmetic and logic unit

f(P,Q)

Quer

Condition code Qiieral ‘

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

m Partial structure of a hypothetical stored program machine
PC MAR

y Program Counter Memory address register

e —

Address The memory address Structure Of a

register gets an address
from the PC or the IR

Incrementer Main store C t
(memory omputer
Address path
The operands field of

the instruction provides Data path

Data
any source and destination between memory T TT [Data path)
‘h\
5

+4

operands required by the and r\egisters
instruction \ R VBR

Daie éxemn memory

to MBR in a readl cycle and

Op-code Ope = N Memory buffer register from MBR to mgmory in a
write cycle.

cuU Register File

Path faken by the jV]
instriation when it is Register r0

fetchgd from memory

Register r1

Path fof data flowing
betweef memory Register r7
(via the’LMBR), the

register, and the ALU

Arithmetic and logic unit

f(P,Q)

Q\ABJ

Condition code Qiieral

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

m Partial structure of a hypothetical stored program machine

LA %7 e

) Program Counter Memory address register

I Structure of a

Address he memory address
gister gets an address
Incrementer Main store

om the PC or the IR Computer
(memory)
Address path
The operands fleld of

the instruction grovides Data path Data

A
any source and destination between memory I [Datapath)

+4

operands requifed by the and registers

: . Data moves from memory
instruction
~ ik MER “\Ito MBR in a read cycle and
Ogfcode Operands Memory buffer register from MBR to memory in a

write cycle.

CcuU Register File

Path taken by the i
instruction when it is Register r0
fetched from memory

Register r1

Path for data flowing
between|memory Register r7
(via the MBR), the

registers, and the ALU

Quer

Condition code ~ Qteral

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Fetch/execute cycle in RTL

FETCH [MAR] <« [PC] ;copy PC to MAR
[PC] « [PC] +4 ;increment PC
[MBR] < [[MAR]] :read instruction pointed at by MAR
[IR] <« [MBR] ;copy instruction in MBR to IR

LDR [MAR <« [IR(address)] ;copy operand address from IR to MAR
[MBR <« [[MAR]] :read operand value from memory
[r1] <« [MBR] ;add the operand to register rl

© 2014 Cengage Learning Engineering. All Rights Reserved

12

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Fetching and Executing an Instruction

Program counter —» | Memory address register Program counter] Memory address register

v

+4 Address +4 Address
Main store Main store
Data Data

v

Operands Memory buffer register Operands Memory buffer register

[Register rO | | Register r0]
Control Unit l Register r1 | Control Unit | Register r1]

Step 1 l Register r2 | Step 2 | Register r2]

f(P,Q) ALU P Read the memory location f(P,Q) ALU P
Copy PC to memory Q pointed at by the MAR and Q

wOpy

address register and update PC. put the instruction in the MBR.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Memory address register

Address Address
Main store Main store
Data

—
Op-code Memory buffer register

Data

Register r0 Register r0
Register r1 Control unit Register r1
Register r2 Register r2

P
f(P,Q) ALU o)

to the MAR.

© 2014 Cengage Learning Engineering. All Rights Reserved

14

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

‘ Memory address register \ Memory address register
Address Address

Main store Main store
Data Data

\

Memory buffer register Memory buffer register

Register r0 Register r0
Control unit Register r1 Control unit Register r1

Register r2 Register r2

oyl ofils f the fP,Q) ALU g
MBR to register r1.

2014

e Learning

O Cenpar

15

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

DEALING WITH CONSTANTS
Suppose we want to load the number 1234 itself into register rl.
Such a number is called a literal operand.
ADD r0,r1,#25 adds the value 25 to contents of r1 and puts sum 1n r0
Figure 3.4 illustrates the data paths required to implement literal operands.

A path from the instruction register, IR, routes a literal operand to the
register file, MBR, and ALU;

When ADD r0,r1,#25 1s executed, the operand rl 1s routed from the operand
field of the IR, rather than from the memory system via the MBR.

16

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

‘ FIGURE 3.4 Information paths for literal operands
PC MAR

Program Counter Memory address register

T

Address The memory address
- register gets an address
Main store from the PC or the IR.

(memory)

Incrementer

The operand field of Data
the instruction can be
either an address or

a literal constant.
™ MBR ! ,
Literal data path

Op-code) Memory buffer register

! CuU Register File

Register r0
Control unit

Register r1
P

The control unit
determines whether
the operand in the
instruction ig an Register 17
address or literal
data.

Arithmetic and logic unit

Path for literal d
data between f(P.Q)
the address
field of the IR Quer
and the ALU
and register

file. Condition code Qiiteral The Q operand may com
from one of two sources,
MBR or literal.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

SAMPLE INSTRUCTIONS

LDR r0,address Load the contents of the memory location at address
into register r0.

STR r0,address Store the contents of register rO at the specified
address in memory.

ADD r0,r1,r2 Add the contents of register r1 to the contents of
register r2 and store the result in register rO.

SUB r0,r1,r2 Subtract the contents of register r2 from the contents
of register r1 and store the result in register r0.

BPL target If the result of the previous operation was positive,
then branch to the instruction at address target.

BEQ target If the result of the previous operation was zero, then
branch to the instruction at address target.

B target Branch unconditionally to the instruction stored at
the memory address target. This executes the 18
instruction at address target.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

FrL.ow CONTROL

Flow control refers to any action that modifies the strict instruction-by-
instruction sequence of a program.

Conditional behavior allows a processor to select one of two possible
courses of action.

Figure 3.5 shows the information paths required to implement
conditional behavior.

A conditional instruction like BEQ results in either continuing program

execution normally, or loading the program counter with a new value and
executing a branch to another region of code.

19

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

FIGURE 3.5 Implementing conditional behavior at the machine level

PC MAR

— Program Counter Memory address register
—Niplexor Sequential l |
/\ Incrementer address

path Address

-— +4

Main store
(memory)

Data

II MBR

Operands K) Memory buffer register

Cu The operand field Register File
of the instruction
can be either an Register rO
address or a

Control unit

/ literal (constant). _
—— Register r1

Branch control
selects next
sequential address
from incrementer or)
address from IR. Register r7

Arithmetic and logic unit

f(P,Q)

Qumer

Condition code Qjitgral

The control unit uses the condition code bits either to B
select the next instruction in sequence or to load
the program counter with a new address.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

FL.ow CONTROL

FIGURE 3.6 Feedback from ALU to instruction

Figure 3.6 illustrate #] Program counter |
how the result from the _I
ALU can be used to ‘_
Main store

modify the sequence of (memory)
Instructions.

' Memory buffer register

Control
unit l Register File

Condition code

Feedback path

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

STATUS BITS (FLAGS)

When the computer performs an operation, it stores status or condition
information in the CCR. The processor records whether the result i1s zero
(Z), negative 1in two’s complement terms (N), generated a carry (C), or
arithmetic overflow (V).

11011100
+11000000
110011100

Z =0, N =
¢ =10, ¥ =0

CISC processors, like the Intel IA32 update status flags after each
operation.

RISC processors, like the ARM, require the programmer update the status
flags.

The ARM does it appending an S to the instruction; for example SUBS 0122
ADDS.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

SUBS rb5,r5#1 ;Subtract 1 from r5
BEQ onZero ;IF zero then go to the line labeled ‘onZero’
notZero ADD rl1,r2,r3 ;;ELSE continue from here

onZero SUB rl1,r2,r3 ;Here's where we end up if we take the branch

subtracts 1 from the contents of register r5. After
completing this operation the number remaining in r5 may be zero or it
may not be zero.

forces a branch to the line labeled ‘onZero’ if the outcome of
the last operation was zero.

Otherwise the next instruction in sequence after the BEQ is executed.

23
This implements: if zero then r1 =12 + r3 else r1l = r2 — r3.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

X=P.Q
IFX>0 THEN X=P+5
ELSE X=P+20

LDR r0.P :Load rO with the contents of location P
LDR r1,Q ‘Load r1 with the contents of location Q
SUBS r2,r0,rl1 ;Subtract the contents of Q from P
toget X=P - Q
BPL. THEN IF X > 0 then execute the THEN’ part
ADD 1r0,r0,#20 ;ELSE Add 20 to the contents of rO to get P + 20
B EXIT ‘Skip past THEN’ part to ‘EXIT
THEN ADD r0,r0,#5 ;Add 5 torOtogetP +5
EXIT STR r0,X :Store rO in memory location X
STOP

24

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

LDR r0,P ;Load rO with the contents of memory location P
LDR r1,Q ;Load r1 with the contents of memory location Q

ADD r0,r0,#20 ;ELSE Add 20 to the contents of r0 to get P
B EXIT :Skip past THEN’ part to ‘EXIT’

THEN ADD r0,r0,#5 ;Add 5torOtoget P+ 5

EXIT STR r0,X :Store r0 in memory location X

STOP

25

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

LDR r0,P ;Load rO with the contents of memory location P
LDR r1,Q ;Load r1 with the contents of memory location Q
SUBS r2,r0,r1 ;Subtract the contents of Q from P to get X =P - Q
BPL. THEN ;IF X > 0 then execute the “THEN’ part

ADD r0,r0,#20 ;ELSE Add 20 to the contents of rO to get P + 20

THEN ADD r0,r0,#5 ;Add 5torOtoget P+ 5
EXIT STR r0,X :Store r0 1n memory location X

STOP

28

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF A CONDITIONAL OPERATION

This sequence of assembly-language instructions can be expressed in
RTL notation:

LDR rO,P :[r0] « [P]

LDR r1,Q (rl] < [Q]

SUBS r2,r0,r1 [r2] « [rO] - [r1]

BPL. THEN ;IF [r2] > 0 [PC] «— THEN
ELSE ADD r0,r0,#20 0] « [rO] + 20

B EXIT C] < EXIT

)

;[
;[P

THEN ADD r0,r0#5 ;[r0] « [r0] +5
;[X]

EXIT STR r0,X «— [rO]

)

27

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Case I: P =12, Q=29, and the branch is taken
Case 2. P =12, Q= 14, and the branch 1s not taken

FIGURE 3.7 Illustration of conditional execution

r0,36 0 r0,36
rl,40 4 rl,40
r2,r0,rl P2, ., rl

24 24 D
r0,xr0,#20 r0,x0,#20

Next
28 28

instruction
r0,x0,#5 Next r0,r0,#5
r0, 44 instruction Y0, 44

12 12

9 14

PCepg = 4, X0
PCiiy = 8; rl
PCopg = 12, 12

12, PCeng = 16,
16, PCepg = 20, r0
20, PCepg = 28,
28; PCiy = 32; X

© Cengage Learning 2014

(a) Case 1 (branch taken) (b) Case 2 (branch not taken)

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Consider the code needed to calculate
1+2+3+4+ ...+ 20

LDR r0#1 ;Put 1 in register rO (the counter)

LDR r1#0 ;Put 0 in register r1 (the sum)
Next ADD rl1,r1,x0 ;

ADD r0,x0#1 ;

CMP r0#21 ;

BNE Next :

STOP :If we have THEN stop

29

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Figure 3.8a illustrates an instruction that implements ADD A,B,C
where A, B, and C are 32-bit memory addresses. The width 1s 112 bits
which 1s unfeasibly large.

Figure 3.8b illustrates the format of a hypothetical RISC processor with
a register-to-register format that can execute ADD R1,R2,R3 where the
registers are chosen from 32 possible registers (requiring a 5-bit
register address field).

Such a format 1s used by most 32-bit RISC processors with small

variations.
FIGURE 3.8 Demonstration of operand address widths

112 bits

32 bits 32 bits 32 bits

B S — B — T ol
Destination Source 1 Source 2
Op-code address address address

(a) Format of a hypothetical instruction with three address fields
32 bits

5 bits

Destination | Source 1 Source 2 30

pothetical instruction with a register-to-register architecture

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

(GENERAL-PURPOSE REGISTERS

Registers are usually the same width as the fundamental word of
a computer (but not always so).

The ARM processor has 32-bit registers, a 32-bit program counter,
and i1ts basic wordlength is 32 bits wide.

Some computers have dedicated registers — different registers
have different functions.

Some computers have entirely general-purpose registers (they all
behave identically).

The ARM has general-purpose regisres but two have special
hardware-defined functions and cannot be used by the
programmer for general-purpose data processing.

31

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Data Extension

Sometimes registers hold data values smaller than their actual length; for
example a 16-but halfword in a 32-bit word register.

What happens to the other bits?

This 1s processor dependent. Some set the unused bits to 0, some leave the
unused bits unchanged, and some sigh-extend the 16-bit word to 32-bits.

FIGURE 3.9 Operations on a subsection of a register

Unused bits Data to be modified

M —n————————————————————
(a) This represents the data before
the operation. An operation takes
place on a slice of the register.

(b) The simplest arrangement
No change (implemented by the 68K) is to

leave bits not taking part in the

operation unchanged.

(c) Some processors perform an
000 operation on a subsection of a
register and clear all bits not taking

part in the operation to zero.

32

(d) If the data in a register is a

signed integer, it is necessary to
expand the number by sign extending
it to 32 bits after the operation.

O Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ADDRESSING MODES

There are three fundamental addressing modes

» Literal or immediate (the actual value is part of the instruction)

» Direct or absolute (the instruction provides the memory address of the
operand)

» Register indirect or pointer based or indexed (a register contains the
address of the operand)

FIGURE 3.10 Progressive sequence of addressing modes

Immediate address
MOV r0, #12

The ARM does not directly support this mode

r0
Absolute address

LDR r0, ABC

Address register indirect 33
LDR r0, [rl]

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition

Instruction types

Memory-to-register The source operand is in memory and the
destination operand is in a register

Register-to-memory The source operand is in a register and the
destination operand is in memory

Register-to-register Both operands are in registers.

CISC processors like the Intel IA32 family and
Motorola/Freescale 68K family allow memory-to-register and
register-to memory data-processing operations.

RISC processors like the ARM and MIPS allow only register-to-
register data-processing operations. RISC processor have a
special LAD and a special STORE instruction to transfer data
between memory and a register.

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Program Counter Relative Addressing

Register indirect addressing allows you to specify the location of an
operand with respect to a register.

LDR r0, [rl, #16] specifies that the operand is 16 bytes on from rl.

Suppose that we use rl5, the PC, to generate an address and write
DR e TR S]

The operand is 16 bytes on from the PC or 8 + 16=24 bytes from the

current instruction (The ARM’s PC is always 8 bytes on from the current
Instruction).

Program counter relative addressing allows you to generate the address of
an operand with respect to the program accessing it.

If you relocate the program and its data elsewhere in memory, the relative
offset does not change.

© 2014 Cengage Learning Engineering. All Rights Reserved

35

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

OP-CODES AND INSTRUCTIONS

Computers can have three-address, two-address, one-address, and zero-
address 1nstructions.

CISC processors typically have two address instructions where one
address 1s memory and one a register.

RISC processors typically have a three-address data processing

instruction where the three operand addresses are registers. They also
have two dedicated two-address instructions, LOAD and STORE.

© 2014 Cengage Learning Engineering. All Rights Reserved

36

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

THE INSTRUCTION SET ARCHITECTURE

Sample address formats

Operands Instruction Effect

Three ADD P,Q.R Add Q to R and put the result in P

Two ADD P.Q Add Q to P and put the result in P
One ADD P Add P to accumulator and put result in the acc
Zero ADD Pop top two items off the stack, add them

and push result

FIGURE 3.11 The three address instruction

ADD rl, r2, r3

Registers Destination

37

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Two Address Machines

A CISC has a two-address instruction format. You can execute Q < P + Q.
One operand appears twice, first as a source and then as a destination.

The price of a two-operand instruction format is the destruction by
overwriting of one of the source operands.

Typically, the operands are either two registers or one register and a
memory location; for example, the 68K ADD instruction can be written:

Instruction RTL definition Mode
ADD DO0,D1 [D1] < [D1] + [DO] Register-to-register

ADD P,D2 [D2] « [D2] + [P] Memory-to-register
ADD D7,P e Bt Register-to-memory

38

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

One Address Machines

A one address machine specifies just one operand in the instruction.

The second operand is a fixed register called an accumulator that doesn’t
have to be specified.

For example, the operation one-address instruction ADD P means

[A] <~ [A] + [P]. The notation [A] indicates the contents of the accumulator.

The simple operation R = P + Q can be implemented by the following
fragment of 8-bit code from a first-generation 6800 8-bit processor.

LDA P ;load accumulator with P
ADD Q ;add Q to accumulator
STA R ;store accumulator in R

© 2014 Cengage Learning Engineering. All Rights Reserved

39

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

THE ARM REGISTERS

FIGURE 3.12 ARM register set

User registers
ro
r1
r2
r3
r4
rS

rOtori2 are
ré general-purpose
7 registers

8 The CPSR (current processor status register)
9 31 30 29 28 27 8 7 6 5 4 0

N|Z|C|V unused IF 1f mode

E)ondition code; Operating mode

Y

| Stack pointer

) The use of r13 as a stack pointer is a programming
Link register convention, whereas the use of r14 and r15 as the link
register and program counter is enforced by the hardware.

Program counter

(© Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Zero Address Machines

A zero address machine uses instructions that do not have an address at
all.

A zero address machine operates on data that i1s at the top of a stack
zero address machines are normally referred to as stack machines.

The code used to evaluate the expression Z = (A + B)*(C — D) might be
written as:

PUSH A Push A on stack

PUSH B Push B on stack

ADD Add top two items and push A+B on the stack

PUSH C Push C on the stack

PUSH D Push D on the stack

SUB Subtract top two items and push C — D on the stack

MUL Multiply top two items on stack (C - D), (A + B) push result
POP Z Pull the top item off the stack (the result)

© 2014 Cengage Learning Engineering. All Rights Reserved

41

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Zero Address Machines

Stack machines can handle Boolean logic. Consider if (A < B) or (C = D).
This can be expressed as:

PUSH A Push A on stack

PUSH B Push B on stack

LT Pull A and B and perform comparison. Push true or false
PUSH C Push C

PUSHD Push D

EQ Push C and D and test for equality. Push true or false

OR Pull top two Boolean values off stack. Perform OR push result.

The Boolean value on the stack can be used with a branch on true or a
branch on false command as in the case of any other computer.

42

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

One-and-a-half address machines

A CISC machine is called a one-and-a-half address machine because one
operand is an address in memory and the other is a register. This 68K
code demonstrates the evaluation of the expression (A+B)(C-D).

MOVE A, D0 ;Load A from memory into register DO
ADD B,D0 ;Add B from memory into register DO
MOVE C,D1 ;Load C from memory into register D1
SUB D,D1 ;Subtract D from memory from register D1
MULU D0,D1 ;Multiply register D1 by DO

MOVE D1,X ;Store register D1 in memory location X

Compare with the following code of an accumulator-based machine:

LDA A ;Load A from memory into the accumulator

ADD B ;Add B from memory into the accumulator

STA P ;Store the accumulator in memory location P

LDA C ;Load C from memory into the accumulator

SUB D ;Subtract D from memory from the accumulator

MUL P :Multiply the accumulator by P from memory

STA X ;Store the accumulator in memory location X 43

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM REGISTER SET

14 general-purpose registers r0 to r13.
r14 stores a subroutine return address

r15 contains the program counter.

Sixteen registers require a 4-bit address which saves three bits per
instruction over RISC processors with 32-register architectures (5-bit
address).

Register r13 1s reserved for use by the programmer as the stack pointer.

The ARM’s current program status register (CPSR) contains Z (zero), N
(negative), C (carry) and V (overflow) flag bits

ARM processors have a rich instruction set a4
Consider ADD r1,r2,r3,LLSL r4 and MLA r1,r2,r3,r4.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM REGISTER SET

FIGURE 3.12 ARM register set

User registers
ro

r1
r2
r3
r4
rs

rOtori12 are
ré general-purpose
7 registers

r8 The CPSR (current processor status register)
9 31 30 29 28 27 8 7 6 5 4

N|IZ|C|V unused IF 1 mode

E)ondition code; Operating mode

Y

| Stack pointer

- The use of r13 as a stack pointer is a programming
Link register convention, whereas the use of r14 and r15 as the link
register and program counter is enforced by the hardware.

© Cengage Learning 2014

Program counter

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

TYPICAL ARM INSTRUCTIONS

TABLE 3.1 ARM Data Processing, Data Transfer, and Compare Instructions

Instruction ARM Mnemonic Definition
Addition ADD r0,rl,r2 [r0] [r1]
Subtraction SUB r0,rl,r2 [x0] [r1]

r2]
r2]

(

(
AND AND r0,rl1,r2 [r0] [r1] - [xr2]

(

OR r0,rl,r2 [r0] [r1l]
Exclusive OR r0,rl,r2 [x0] [r1]
Multiply r0,rl,r2 [x0] [r1]
Register-to-register move r0,rl [x0] [r1]
Compare rl,r2 [r1] - [x2]

r2]

Branch on zero to label label [PC] « label (jump to label)

© Cengage Leaming 2014

46

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM ASSEMBLY LANGUAGE

ARM instructions are written in the form
Label Op-code operandl, operand2, operand3 ;comment

Consider the following example of a loop.

The Label field 1s a user-defined label that can be used by other
instructions to refer to that line.

Any text following a semicolon 1s regarded as a comment field and i1s
1gnored by the assembler.

47

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Suppose we wish to generate the sum of the cubes of numbers from 1 to 10.
We can use the multiply and accumulate instruction;

MOV r0,#0 ;clear total 1n r0
MOV r1,#10 :FOR1=1 to 10 (count down)
NextMUL r2,rl,rl : square number
SUBS r1,r1,#1 ; decrement counter (set condition flags)
BNE Next ;END FOR (branch back on count not zero)

This fragment of assembly language 1s syntactically correct and implements
the appropriate algorithm. It is not yet a program that we can run.

We have to specify where the code goes in memory.

There are two types of statement — executable instructions that are executed
by the computer and assembler directives that tell the assembler something
about the environment.

48

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

STRUCTURE OF AN ARM PROGRAM
(CODE WHITE, ASSEMBLER DIRECTIVES RED)

MOV r0,#0 :clear total 1n r0
MOV r1#10 ‘FOR1=1 to 10
Next MUL r2,rl,rl © square number
MLA r0,r2,r1,rO ; cube number and add to total
SUBS r1,r1,#1 : decrement loop count
BNE Next ‘END FOR

49

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Snapshot of the Display of an ARM Development System

m Assembling an assembly language program using Kiel’'s ARM IDE

Flle Edit View Project Flash Debug Peripherals Tools SVCS Window Help

| J ;; i . 1 I} o L)

222 (F) o " Target1

*] Cubess
01 ARER Cubes, CODE, READCNLY
02 ENTRY
03 MOV r0, #0
04 MOV ri, 10
05 Ne MUL r2,rl, rl
06 MLA r0,r2,r1, r0
07 ri,rl, $1
0g BNE Next
09
10

H KN -

| Build Output

Build target 'Tazxget 1°'
linking...
Program Size: Code=24 RO-data

=0 RW-data=0 ZI-data=0
"Chap3_Intro Cubes.axf" - 0 Err

or{s), 0 Warning(s).

ject ‘@5-32‘7: { {} Functions ‘U..:":"u,::tv:: ﬂBuildOutput

|
|Simula

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

This 1s the Disassembly Window that shows memory contents as
both hexadecimal values and code.

FIGURE 3.14

Disassembly
- MOV
C>0x00000000 E3A00000
13 MOV
0x00000004 E3A0100A
5: Next MUL
0x00000008 EOQ0020191
6
0x0000000C

)
<
L8]
o =
o n
-
N

5
O U w

0x00000010

N

o
EJﬁPU)
[-;il_)

=]

0x00000014

The disassembly window with the hexadecimal code generated by the
program

sclear

RO, #0x00000000
; FOR

R1,#0x00000004

H square number
R2,R1,R1

; cube number and add to total
RO,R2,R1,RO

; decrement loop count
R1,R1,%0x00000001

;END FOR
0x00000008

>

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Executing a program

IEI E:\CengageBook\Z_ARM\Chap3_Intro_Cubes.urvproj - pVisiond
File Edit WYiew Project Flash Debug Peripherals Tools 5VCS Window Help

JSdd e = #
X EO B v DBBEGE-EZ-8- 2 @ -

Cubes.s

M AREL Cubes, CCODE, READCOHLY

02 ENTRY
003 MOV r0, #0

04 MO rl, #10

05 r2, rl, rl

& MLA r0,r2,rl, r0
(00000000 07 SUBS ri,rl,#1
(00000000 03 BNE HNext
(00000000 03
(00000000 10
(00000000
(00000000 \
(00000000 Click on this icon to execute
(00000000

00000000 an instruction.

R13(SP) (00000000
R14 LR} (00000000
R15(PC) (00000000
- CPSR (00000003
- 5P5R (00000000
- User/System

- Fast Intemupt

- Intermupt

00 v|
i=] Project | = Registers

%]

P
H

S
e
(b

.\
%]

m W k.

B T
[
[

5]
H oo
TRy

Sa

[
£
[
[

F|
-
.
F|

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1% Edition

Executing a program

Clements

|E| E:\CengageBook\Z_ARM\Chap3_ Intro Cubes.uvproj - pVisiond =10] %]
File Edit View Project Flash Debug Peripherals Tools 35VCS Window Help
REFTIPET = =) " Qe o4
S EO Bt » DRBEGS-D-3-8-T-E@ -
| Registers n x| Cubes.s hile
Register I"u"alue I; 01 ARERL Cubes, CODE, RERDONLY g
= Curment 02 ENTEY
....... RO D IOODDD0D] MO rd, #0 sclear totasl 1n rd
....... R1 D DO00000A 04 Mo rl,#10 ;FOR 1 = 1 to 10
UcDD0DD0GA s HMNext ML r2, rl, rl s sguare numb
....... F3 00000000 ==0E MILA rl, 2, rl, 0 ;s cube number and add to total
....... =F] 00000000 07 SUBSE rl,rl,#%1 ;s decrement loop count
....... =13 (e DODOD000 ns BHE Hext FEND FOR
------- RE (00000000 03 ENC
"""" 7 (00000000 10
"""" Ra (00000000
"""" RS (00000000
"""" R10 00000000 —
"""" R11 (00000000
"""" R12 (00000000
"""" R13(5F) (00000000
"""" R14 (LR} (00000000
R15(PC) (e 0000000C
H-CPSR (00000003
[+ SPSR (e DD000000 v
=] Project | = Registers JLI_I —hl—l
||5imu|a| s

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

The following slide demonstrates some assembly language directives
(in red). These directives are:

EQU equate

DCD define constant
DCW define constant
DCB define constant
END

ENTRY

AREA

ALIGN

Equate a name to a value

Set up a 32-bit constant in memory
Set up a 16-bit constant in memory
Set up an 8-bit constant in memory
The physical end of the code

Starting point for execution

Names the region of code or data
Ensures that instructions are correctly
aligned on 32-bit boundaries

54

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition

MOV r6#XX :load r6 with 5 (1.e., XX)
LDR r7P1 :load r7 with the contents of location P1
ADD r5,r6,r7 ;just a dummy instruction

MOV r0,#0x18 ;angel SWlreason_ReportException
LDR rl1, =0x20026 ;ADP_Stopped_ApplicationExit
SVC #0x123456 ;ARM software interrupt

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

55

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

PSEUDOINSTRUCTIONS

A pseudo instruction is an operation that the programmer can use when writing
code. The actual instruction does not exist. The assembler, generates suitable
code to carry out the same action.

For example, you can’t write MOV r0,#0x1234567 to load register rO with the
32-bit value 0x01234567 because an instruction is only 32 bits long in total.

The pseudoinstruction ADR r4..tinations12bel, loads the 32-bit address of the line
‘label’ into a register.

The following fragment demonstrates the use of the ADR pseudoinstruction.
;set up rl to point to MyArray
LDR r3,[rl] ;read an element using the pointer
MyArray DCD 0x12345678 ;the address of this data will be loaded
ADR r1,MyArray loads register r1 with the 32-bit address of MyArray using the

appropriate code generated by the assembler. The programmer does not have to
know how the assembler generates suitable code to implement the ADR.

© 2014 Cengage Learning Engineering. All Rights Reserved

56

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Another useful pseudoinstruction 1s LDR rd, = value. The compiler
generates the code that allows register rd to be loaded with the stated

value; for example,

LDR r0, = 0x12345678
loads rO with 12345678.
The assembler uses a MOV or MVN 1nstruction if 1t can, or 1t uses an
LDR r0,[pc.#offset] instruction to access the appropriate constant
12345678, that 1s stored in a so-called literal pool or constant pool

somewhere in memory.

All this is done automatically.

57

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Executing Code in a Development System

This 1s the snapshot of the development system. It shows the code
in source form and the contents of registers.

% E:\'CengageBook\Z_ARM\Chap3_Intro_Cubes.uvproj - pVisiond
File Edit Miew Project Flash Debug Peripherals Tools 3SVCS5 Window Help

=4" - = iE iFE 2
S EBO mPow e DRAEECR- O-5-8-8-F-
| Registers n x| i CI&S.S

| value [~ AREE Cubes, CODE, READONLY
ENTRY

(00000000 MOV D, %0

(0000000A MOV rl, %10

(0000064 rz, rl, rl
- R3 (0000000 MLA r0, r2,rl, rD
(0000000 SUBS rl,rl,#%1
- R (0000000 BHE Hext
- R [0000000
-~ R7 [0000000
- Ra (00000000
RS (0000000
~R10 (00000000
- R11 (0000000
- R12 (0000000
- R13 (SF) (0000000
- R14 ({LR) (0000000

D BO00000C
[+ CP5R (0000003
- SPSR (00000000 ,l

ﬂ Project | = Registers

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Snapshot of a Debugger showing memory locations

& CHARMZO0BINYCALC - ARM Debugger
File Edit Search WYiew Execute Options Ikermn Window Help

R E R E R = ==
_Execution Window - CALLC.S
i 0

AREL ARMtest., CODE, READONLY Oxffffffff
0x00000=244
SWI_WriteC EQU &0 0=00000000

SWI_ReadC EQU &4 0=00000000
0=00000000

ENTRY 0=00000000
O=00000000
[Balc r13, #0xA000 :initialize the =stack pointer Oz000ooooo
HewLln 0=00000000
input ;get first number and terminator O=xz00000000
r2,rl ;save terminator (i.e.. operator) Ox00000000
ri.rl ;save first number O=00000000
Hewln 0=z00000000
input ;get sscond number and terminator O=x00000000
rd,xl save terminator O=00000000
Hewln O0=00008080

mnath ;do the calculsation snzovift Userid2
rd. &'h'

outHe=

outDec ;displavy the number
Hewln

getCh

0, ¥'y'

Hewln

calc

0=009fe=8d Ox00000000
0xz00% ec Ox00000000
0=009ff0 O=00000000
0=009ff4 Ox00000000
0=009ff8 O=00000000
0=z00%ffc Ox00000000
0=00=2000 Ox00000000
0=00=2004 O=00000000
0=z00=00%2 Ox00000000
0x=00a00c O=00000000
0=z00=2010 Ox00000000
0=00=2014 Ox00000000
0xz00=a018 O=00000000
0xz00a0lc Ox00000000
0=00a020 O=00000000
0=z00=a024 Ox00000000

O=00a024 O=00000000
1] 1]

send

cread string of digit= and accumulate total in
jreturn with non—wvalid digit terminator in r0
0, 0 ;clear input register
rl,#0 ;clear accumulated total
rld,.[sp.#-4]! .sawve link register on the stack
g=tCh gt a character in r0

Active Console

.
Executing [

g@gtart”J Bv & @ & =3 | B arm p...| lﬂglnbox...| &1Ths D... ||ﬂ|::\AR... @Docum...| |<E|5®@ S s 520 pm

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Data-Processing Instructions

Addition ADD
Subtraction SUB
Negation NEG

Comparison CMP
Multiplication MUL
LSL, LSR, ASL, ASR, ROL, ROR

Note: The ARM does not have an explicit shift instruction but
combines a shift with other operations.

60

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

As well as a simple ADD instruction that adds two 32-bit values,
ARM has an ADC (add with carry) that adds to registers together
with the carry bit. This allows extended precision arithmetic as
Figure 3.21 demonstrates.

" FIGURE 3.21 Single- and extended-precision addition

ADD r2,xr0,rl ADDS r4,r0,x2
ADC 5,xrl1l,¥r3

(a) Single-precision addition. When (b) Double-precision extended addition. When
r0 is added to r1, the result is loaded r0 is added to r2, any carry out is stored in the
into r2, and the carry bit is loaded into the carry bit. When r1 is added to r3, the carry bit
the carry flag. is added to their sum. In other words, the carry
out generated by ADDS r4,r0,r2 becomes
the carry in used by ADC r5,rl, r3.

61

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

COMPARISON

CMP Q,P which evaluates @ - P but does not store the result;

A et e el gl iaeliaeal Lo el
B Next ;Jump pest the then part

Dolfde Lo b el el] oL
Next L Pl i e e

62

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

The multiply instruction, MUL Rd,Rm,Rs, calculates the product of
two 32-bit signed integers in 32-bit registers Rm and Rs, then deposits
the result in 32-bit register Rd, which stores the 32 lower-order bits of
the 64-bit product.

MOV r0,#121 :load rO with 121
MOV r1#96 :load r1 with 96
MUL r2,r0,r1 r2=r0xrl

you can’t use the same register to specify both the destination Rd and
the operand Rm, because ARM’s implementation uses Rd as a
temporary register during multiplication. This is a feature of the ARM
processor.

ARM has a multiply and accumulate instruction, MLA, that performs
a multiplication and adds the product to a running total. MLA
instruction has a four-operand form: MLA Rd,Rm,Rs,Rn, whose RTL
definition 1s [Rd] = [Rm] x [Rs] + [Rn]. A 32-bit by 32-bit
multiplication is truncated to the lower-order 32 bits.

© 2014 Cengage Learning Engineering. All Rights Reserved

63

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition

Clements

ARM’s multiply and accumulate supports the calculation of an inner

product by performing one multiplication and addition per instruction. The
inner product is used in multimedia applications; for example, if vector a consists
of n components a;, a,, ... a, and vector b consists of the n components b, b, ...
,b,,, then the inner product of a and b is the scalar value

e b= B g4 B e

MOV
MOV
ADR
ADR
e iR

LDR

SUBS

BNE

rd, #n
r3, #0
Cad e g
r6,Vector’
TU

vl el 3

rd, rd, #1

Loop

ardislinhe
Pl THe
Al ponnn
slE oL

loop counter
inner product
Lo ey
to vector 2

;REPEAT read a component of A and
;update the pointer

flgel the

Al T

second element

vy 4 el
= decrement

thel loop counter

. (and remember to set the CCR)
pLR IRl

64

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

BITWISE LOGICAL OPERATIONS

Instruction Operation Final value in r2

AND r2,r1,r0 11001010.00001111 00001010

OR r2,r1,x0 11001010+00001111 11001111

NOT r2,r1 11001010 00110101

EOR r2,r1,r0 11001010©00001111 11000101

Although ARM lacks an explicit NOT instruction, you can perform a
NOT by using an EOR with the second operand equal to FFFFFFFF, .
(32 1’s 1n a register) because the value of x @ 1 1s NOT x. A NOT

operation can also be implemented with the move negated instruction
MVN, that copies the logical complement of a value into a register.

65

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Suppose that register rO contains the 8 bits bbbbbbxx, register rl
contains the bits bbbyyybb and register r2 contains the bits zzzbbbbb,
where X, y, and z represent the bits of desired fields and the b’s are
unwanted bits. We wish to pack these bits to get the final value zzzyyyxx.
We can achieve this by:

ANDr0,r0.#2 00000011 ;Mask r0 to two bits xx
ANDr1,r1,#2 00011100 ;Mask r1 to three bits yyy
ANDr2,r2#2 11100000 ;Mask r2 to three bits zzz

OR r0,rO,rl :Merge rl1 and r0 to get 000yyyxx
OR r0,r0,r2 ;:Merge r2 and r0 to get zzzyyyxx

66

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Shift operations move bits one or more places left or right.
Logical shifts insert a 0 in the vacated position.

Examples of logical shifts

Source string Direction Number of shifts Destination string
0110011111010111 Left 1 1100111110101110
0110011111010111 Left 2 1001111101011100
0110011111010111 Left 3 0011111010111000
0110011111010111 Right 1 0011001111101011
0110011111010111 Right 2 0001100111110101
0110011111010111 Right 3 0000110011111010

67

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Arithmetic shifts replicate the sign-bit during a right shift

Circular shifts treat the register as a ring and the bit shifted out of one
end 1s shifted in the other end.

FIGURE 3.23 Shift operations
LSL

d In a logical shift, a zero is
c Operand <— 0 shifted in and the bit shifted

out is copied to the carry bit of
the condition code register.

LSR

e —

(a) Logical shift

ASL

In an arithmetic shift, the
number is either multiplied
by 2 (ASL) or divided by 2
(ASR). The sign of a two's

ASR complement number is

The bit shifted out is copied
into the carry bit.

(b) Arithmetic shift

In a rotate operation, the bit
Gpetend shifted out is copied into the

bit vacated at the other end

The bit shifted out is also copied
i h it.
Operand —> into the carry bit

(c) Rotate

ROL
ROR (i.e., no bit is lost during a rotate).

ge Learning 2014

68

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

The rotate through carry instruction (sometimes called extended
shift) included the carry register in the shift path.

The carry bit is shifted into the bit of the word vacated, and the bit
of the word shifted out is shifted into the carry.

In eight bits, if the carry C = 1 and the word to be shifted is
01101110, a rotate left through carry would give

11011101 and carry = 0

FIGURE 3.24 The rotate through carry

Rotate right through carry

T e [o]

Rotate left through carry

[e] ok

69

-t
—
s
o~
o
=
=
=
=
o
=7
o

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

IMPLEMENTING A SHIFT OPERATION ON THE ARM

ARM combines shifting with other data processing operations, because the
second operand can be shifted before it is used. Consider:

ADD r0,r1,x2, LSL #1

A logical shift left is applied to the contents of r2 before they are added to the
contents of r1. This operation is equivalent to

[x0] « [r1] + [r2] x 2.

To apply a shift operation to a register without any other data processing, you
can a move

MOV r3,r3 LSL #1.

You can perform dynamic shifts. Consider MOV r4,r3, LSL r1, which moves the
contents of r3 left by the value in r1 before putting the result in r4.

Suppose a number in r0 is of the form 0.00000010101111... and you want to
normalize it to 0.101... If register r1 contains the exponent, we can execute MOV 70
r0,r0,LSL r1 to perform the normalization operation in a single cycle.

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Figure 3.25 illustrates the structure of instructions with shifted

operands and shows how the various fields control the shifter and
the ALU.

m ARM'’s barrel shifter

31 28 27 26 25 24 21 2019 1615 12 11

Condition 0O Of # | Op-Code | S | .

sourcel |Tdestination

11 76 543 0
Shift length | Shift type

r source2

l

Barrel
Operand 1 > :
Shift control shifter

v Operand 2

-

l

Result
© 2014 Cengage Learning Engineering. All Rights Reserved

© Cengage Learning 2014

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM implements only the following five shifts (the programmer can
synthesize the rest).

LSL logical shift left

LSR logical shift right

ASR arithmetic shift right

ROR rotate right

RRX rotate right through carry (one shift)

Other shift operations have to be synthesized by the programmer.

72

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Figure 3.26 illustrates the structure of the ARM’s data processing
Instructions and demonstrates how bit 25 is used to control the
nature of the second source operand.

FIGURE 3.26 Encoding the ARM'’s data processing instructions

28 27 26 25 24 21 2019 1615 12 11

o [o o [l o0 gEE=

543

| iate shif
n mmediate shift Shift length | Shift type n

Shift specified by register

© Cengage Leaming 2014

n Literal operand

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

UNCONDITIONAL BRANCH

ARM’s unconditional branch instruction has the form B target, where
target denotes the branch target address (BTA, the address of the next
instruction to be executed). The following fragment of code
demonstrates how the unconditional branch is used.

a0 1 Some code
then that Some other code

..Lhe code being skipped past
..the code being skipped past

© 2014 Cengage Learning Engineering. All Rights Reserved

74

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

CONDITIONAL BRANCH

IF (X ==Y)
THENY =Y + 1;
ELSEY=Y +2

A test 1s performed and one of two courses of action 1s carried out
depending on the outcome. We can translate this as:

CMP r1,r2 : vl contains y and r2 contains x: compare them

ADD r1,r1#1 f equal fall through to here and add one to y
B leave :now skip past the else part

leave ... ;continue from here

The conditional branch instruction tests flag bits in the processor’s
condition code register, then takes the branch if the tested condition is
true. There are eight possible conditional branches based on the state of
a single bit (four that branch on true and four that branch on false).

© 2014 Cengage Learning Engineering. All Rights Reserved

75

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM’S BRANCHES

TABLE 32 i ARM'’s Conditional Execution and Branch Control Mnemonics

Encoding Mnemonic Branch on Flag Status Execute on condition

0000 EQ Z sel Equal (i.e., zero)
0001 NE Z clear Not equal (i.e., not zero)
0010 CS C set Unsigned higher or same
0011 (G C clear Unsigned lower
0100 MI N set Negative
0101 PL N clear Positive or zero
0110 VS V set Overflow
0111 VC V clear No overflow
1000 HI Csetand Z clear Unsigned higher
1001 IS C clear or Z set Unsigned lower or same
1010 GE N set and V set, or Greater or equal
N clear and V clear
1011 ET N set and V clear, or Less than
N clear and V set
1100 _ Z. clear, and either N set and Greater than
V set, or N clear and V clear
1101 Z. set, or N set and V clear, or Less than or equal
N clear and V set
1110 Always (default)
1111 Never (reserved)

© Cengage Leaming 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

BRANCHING AND LLOOP CONSTRUCTS

Nothing illustrates the concept of flow control better than the classic

loop constructs that are at the core of so-called structured programming.
The following demonstrate the structure of the FOR, WHILE and
UNTIL loops.

The FOR loop
MOV r0, #10 Jer e b amol o e
Bloia o qaamal 00 oo ot the | Loon
BRSO Lm0 L e eimic m e oo o oo ide | e | eo)es

BNE Loop jnonmniane Nl oaunt e
Poseloonm L DL e L L e e il i o e o e

77

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

CONDITIONAL EXECUTION

One of ARM’s most unusual features 1s that each instruction 1s
conditionally executed. We can associate an instruction with a
logical condition.

If the stated condition 1s true, the instruction 1s executed.
Otherwise 1t 1s bypassed (annulled or squashed).

The assembly language programmer indicates the conditional
execution mode by appending the appropriate condition to a
mnemonic; for example,

ADDEQ rl,r2,r3

specifies that the addition i1s performed only if the Z-bit is set
because a previous result was zero. The RTL form of this operation
1S

78
IF Z =1 THEN [rl] < [r2] + [r3]

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

CONDITIONAL EXECUTION

There 1s nothing to stop you combining conditional execution and
shifting because the branch and shift fields of an instruction are
independent. You can write

ADDCC r1,rx2,r3, LSL r4

which is interpreted as [F C = 0 THEN [r1] < [r2] + [r3] x 2[4

79

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM’s conditional execution mode makes it easy to implement
conditional operations in a high-level language.

Consider the following fragment of C code.
e X Py

If we assume that rl contains P, r2 contains @, r3 contains X, and
r4 contains Y, then we can write

CMP rl1,r2 ;compare P == Q
SUBEQ r3,rl,r4 ;af (P==Q)thenr3=rl -r4

Notice how this operation is implemented without using a branch
by squashing instructions we don’t wish to execute rather than
branching round them. In this case the subtraction is squashed if
the comparison is false

80

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Now consider a more complicated example of a C construct with a
compound predicate:

if (a==b) && (c == d)) et++;

CMP rO,rl :compare a ==Db

CMPEQ r2,r3 :if a == b then test ¢ ==

ADDEQ r4,r4#1 ;if a == b AND c¢c == d THEN increment e
The first line, CMP r0,r1, compares a and b.

The next line, CMPEQ r2,r3, executes a conditional comparison
only if the result of the first line was true (1.e., a == b).

The third line, ADDEQ r4,r4,#1, is executed only if the previous
line was true (i.e., c == d) to implement the e++.

81

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition

You can also handle some testing with multiple conditions.

Consider:

if(a==b)e=e+4;
if(a<b) exse+T;
if(a>b) e=e+ 12;

We can use conditional execution to implement this as
CMP rO,rl :compare a ==b
ADDEQ r4,r4#4 ;ifa==bthene=e+4

ADDLE r4,r4 #7 idfa<b thene=e+ 7
ADDGT r4r4#12 ;1fa>b thene=e + 12

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

82

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ADDRESSING MODES

Mnemonic RTL form Description
ADD r0,r1,#Q [r0] « [r1] + Q Literal: Add the integer Q to
contents of register rl

LDR r0,Mem [r0] « [Mem] Absolute: Load contents of memory
location Mem into register r0. This
addressing mode is not supported
by ARM but is supported by all
CISC processors

LDR r0,[r1] [r0] « [[r2]] Register Indirect: Load r0O with the
contents of the memory location
pointed at by r2

The ARM lacks a simple memory direct (i.e., absolute) addressing

mode and does not have an LDR r0,address instruction that

1mplements direct addressing to load the contents of a memory

location denoted by address into a register. 83

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1% Edition

Concepts of Addressing Modes

FIGURE 3.27 Summary of addressing modes that can be used by ARM

ro
Register to register
MOV r0,rl

[] Immediate address
— MOV £0,#12

Address register indirect
LDR r0, [r1]

Address register indirect
with offset
Literal offset LDR r0, [rl,#Literal]

Address register indirect
with index
re LDR r0, [r1l,x2]

1]

Variable offset

Program counter relative
LDR r0, [PC,#offset]

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

84

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Handling Literals
ARM is able to use literal operands.

ADD r0,r1,#7 adds 7 to r1 and puts the result in rO.
MOV r3,#25 moves 25 into r3.

Literals are 12 bit values in the range 0 to 4095.

Literals can be scaled by a power of 2 (an unusual feature of the ARM).

Figure 3.28 illustrate the format of ARM’s instructions with a literal
operand.

FIGURE 3.28 Diagram of ARM'’s literal operand encoding

28 27 26 25 24 2019 1615 12 11

) e e e e

85

-t
—
=
o~
o
[=
(=
a
-
Q
on
@
o
=
Q
2
&)

Alignment | 8-bit immediate value

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Register Indirect Addressing

In register indirect addressing, the location of an operand is given by
the contents of a register.

All computers support some form of register indirect addressing.

FIGURE 3.31 Register indirect addressing

Memory

Pointer register Destination
] register

[f0]=n n+4

LDR rl, [x0] copies the
contents of the memory
location pointed at by
register r0 into register r1.

The pointer register
points to location n in
memory.

86

© Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

In register indirect addressing, the location of an operand is given by
the contents of a register. All computers support some form of register
indirect addressing. This 1s also called:

* Indexed
e Pointer-based

The ARM indicates register indirect addressing by means of square
brackets; for example,

LDR r1,[r0] ;load r1 with the contents of the memory location pointed
:at by r0

FIGURE 3.31 Register indirect addressing

Memory

Destination
register .

LDR rl, [r0] copies E 87
. . contents of the memory
The pointer register location pointed at by

points to location 1 in register r0 into register r1. 5
memory. 5

[f0]=n n+4

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition

Figure 3.31 shows the execution of

LDR r1,[r0] ;load r1 with the contents of the memory location pointed
;at by r0

FIGURE 3.31 Register indirect addressing

Memory

Destination
register

[rol=n 4 LDR rl, [r0] copies the

Y) contents of the memory
The pointer register location pointed at by
points to location n in register r0 into register r1. 5
memory.

ngage Learning 2014

€

Consider what happens if we next execute

ADD r0,r0,#4 ;Add 4 to the contents of register r4
:(1.e., iIncrement the pointer by one word)

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

88

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Figure 3.32 demonstrates the effect of incrementing the pointer register.
It now points to the next location in memory.

This allows us to use the same instruction to access a sequence of
memory locations; for example, a list, matrix, vector, array, or table.

. FIGURE 3.32 Effect of incrementing the pointer register

Memory

Destination
O1=ned 2

The pointer register
points to location n + 4
in memory.

After accessing memory
via a pointer in register
r0, adding 4 to the
contents of r0 means that
the pointer now points at
the next word in memo

89

© Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Register Indirect Addressing with an Offset

ARM supports a memory-addressing mode where the effective address of
an operand is computed by adding the contents of a register to a literal
offset coded into the load/store instruction.

This addressing mode 1s often called base plus displacement addressing.

Figure 3.33 illustrates the instruction LDR r0,[r1,#4]. The effective
address is the sum of the contents of the pointer register rl plus offset 4;
that 1s, the operand is 4 bytes on from the address specified by the pointer.

" FIGURE 3.33 Register indirect addressing with an offset

Memory
Instruction register

Op-code | Operand

Effective

address ——
Destination

Pointer register

If the instruction is LDR rl, [r0, #4]
and r0 contains 1000, the effective
address of the source operand is
1000 + 4 = 1004.

90

O Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

The following fragment of code demonstrates the use of offsets to
1mplement array access. Because the offset 1s a constant, it cannot be
changed at runtime.

Sun EQU 0O ;offsets for days of the week
Mon EQU 4
Sat EQU 24

ADR r0, week ;r0 points to array week

91

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1% Edition

| W4 C:\Keil\ARM\Examples\DaysOfWeed.uvproj - uVision4 ® QE

File Edit Wiew Project Flash Debug Peripherals Tools SVCS5 Window Help
S da@| 4 i | | | &= = /= | & M= @) e o & &[F) A
RO aro ol a@BEEE- F-®E- D@ |

| Registers 8 [@ Disassembly

ADER r0, Week
E28F0014 ADD

:r0 points to
RO, PC, #0=x00000014
LDR r2, [r0,#Tue] ;read the
E5902008 LDR EZ, [RO, $0x0008]
LDE r3, [x0, #Wed] sread the dat for Wednesday into r3
LDR E3, [RO, $0x000C]
ADD r4,r2,r3 sadd Tue=sday and Wednesday

| 10: array week
0=x00000000
11:
0=x00000004
12:
0=x00000008
13:

Register | Value

= Current
RO (x(000001C
R1 (00000000
R2 0x33333333

R3 4444444

data for Tuesday into r2

E530300C

0=x0000000C
14:

0=x00000010
15:

2S0x00000014

< [m]

E0O824003 ADD E4,R2Z,R3

5TR r4, [x0, #Mon] ;sput the result in Monday
STR R4, [RO, $0x0004]

HOP

HOP

R4 Ox77777777
R5 000000000
R6 0x00000000
R7 Ox00000000
R38 0x00000000
R9 0x00000000
R10 Ox00000000
R11 0x00000000
R12 0x00000000
R13(SP) Ox00000000
R14(LR) 0x00000000

+--CPSR Ox000000D3

+-- SPSR 0x00000000

User/System

Fast Interrupt

Interrupt

Supervisor

ES5804004

E1200000

DaysOfWeek.asm

ERER DaysOfWeek, CODE, RERDONLY
EQU 0 - offsets for days
EQU 4

EQU &

EQU 0xC
EQU 0x10
EQU 0x14
EQU 0x18

Sun
Mon
Tue
Wed
Thu
Fri
Sat
ENTER

.,

. N

T T
ST S R o T S

.
3%}
Wy ooy b

Abort
Undefined
Internal

PC %
Mode
States
Sec

0x00000014
Supervisor
10
0.00000000

x0, Week
x2, [x0, #Tue]
xr3, [x0, #Wed]

rd, r2,x3
r4, [x0, #Mon]

n

e o
P VI T T

n

DaysOfveek,
0x11111111
0x22222222
0x33333333
0x44444444

EIXEI:I:I:I:I:I:I:

e B bu Bo B Ba’
P
UXoooooooo
TF7777777
FI A A B

Registers

DATZ, READWRITE
sdata day
sdata day
sdata day
sdata day
sdata day
;data day
sdata day

(Sunday)
(Monday)
(Tuesday)
(Wednesday)
(Thursday)
Friday)

My oy My
0000000
] oy s Ly By

B R R RRRHR

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

Snapshot of
the
program
using
register
indirect
addressing
with an
offset.

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Register Indirect Addressing with Base and
Index Registers

You can specify the offset as a second register so that you can use a
dynamic offset that can be modified at runtime (See Figure 3.35).

LDR r2,[r0,r1] :[r2] « [[xO] + [r1]] load r2 with the location
;pointed at by r0 plus r1

LDR r2,[rO,r1, LSL#2] ;[r2] « [[xO] + 4 x [r1]] Scale r1 by 4

In the second example, register rl is scaled by 4. This allows you to use
Vs e kol hdexed addressing with x register offsat

Address register indirect
with index
LDR r0, [r1,r2].

re

[]

Variable
offset

93

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Pre-indexing (register indirect with a constant/literal)

25 CAUSERSVALANADESKTOPVARCHITECTURE_RESOURCES \WARMMABINAVARM_CH3_ INDEXADDRESS - ARM Debugger
File Edit Search Miew BExecute Options tem Window Help

AFEA INDEXING.
EHTRY

EQU 2%d

ADE 0, X

LDE rl.[r0.#1i]

= O Hh

94

M

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

AUTOINDEXING PRE-INDEXED ADDRESSING MODE

Elements in an array or similar data structure are frequently accessed
sequentially. Auto-indexing addressing modes in which the pointer is
automatically adjusted to point at the next element before or after it is
used have been implemented.

ARM implements two auto-indexing modes by adding the offset to the
base (i.e., pointer register).

ARM’s autoindexing pre-indexed addressing mode is indicated by
appending the suffix “!” to the effective address. Consider the following
ARM instruction:

LDR r0,[r1,#8]! :load rO with the word pointed at by register rl
; plus 8 then update the pointer by adding 8 to r1

The RTL definition of this instruction is given by

[rO] « [[r1] + 8] Access the memory 8 bytes beyond the base register rl

[r1] < [r1] + 8 Update the pointer (base register) by adding the offset o5

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

EXAMPLE OF PRE-INDEXED ADDRESSING MODE

This auto-indexing mode does not incur additional execution time, because
1t 1s performed in parallel with memory access.

Consider this example of the addition of two arrays.

Len EQU 8 :let’s make the arrays 8 words long
ADR r0,A - 4 ;register rO points at array A
ADR r1,B -4 ;register rl points at array B
ADR r»2,C - 4 ;register r2 points at array C
MOV r5 #Len use register rb as a loop counter
Loop
ADD r3,r3,r4 ;add two elements

SUBS r5,r5,#1 :test for end of loop
BNE Loop ;repeat until all done

96

© 2014 Cengage Learning Engineering. All Rights Reserved

Current
R
R
~R3
R

R
7
R
Rl

~R12

-~ R13(5P)
- R14 (LR}
& R15 (PC)
[+ CPSR

[+ SPSR
User/System
Fast Intemupt
Irtemupt
Supervisor
Abort
Undefined
I.rrtemal

~PC §

- States
b B

(00000028

(00000023
Supervisor
106
0.00000000

©

2

Computer Organization and Architecture: Themes and Variations, 1% Edition

BRFZ AutoIndexing, CODE, READWRITE

EQU B
ADR rO,B - 4
LDRE rl,B - 4 Jregister rl
LDR r2,C - 4 Jreglster ri
MOV rh,#Len Juse

:let's make ti vords long

1]

H
h;
u
[
(%)

4

iregister r0

[
[
F

=)
it

]
F
=R = T =

[ST S S
ta

[

ket ket

o ot
(%]
i
(] |-|'“
(%]
E
=
it
i
H

g

e
i
Doy Mmoo

[T TR T S TR w &
=]
H
i o

i B M B

[

LDR
LDR
ADD
5TR
5UBS
BNE

r3, [c0,#4]!
rd, [rl,$4]!
r3,r3, rd
r3, [r2,#4]!
rh,r5, 1
Loop

e

T

NOE
ARER RutoIndexing, DATA, READWRITE
ocC 1,2,3,4,5,6,7,8
DCD 2,5,4,6,7,2,4,1
ocd 0,0,0,0,0,0,0,0

END

Memory 1 X

nA

Address; |44

0x0000002C:
0x0000003C:
0x0000004C:
0x0000005C:
0x0000006C:
0x0000007C:
0x0000008C:

00 00 00 01
00 00 00 05
00 00 00 €2
00 00 00 O7

P .
i 0 if
e

00 00 00 00

-

i 00 03 14 1}

(LR FLT N P I FLT R FLE
-

00 00 00 02
00 00 00 06
00 00 00 05
00 00 00 02

e
]

00 00 00 00

00 00 00 03
00 00 00 07
00 00 00 C4
00 00 00 04

P =T
i 00]

=
=

00 00 00 00

014 Cengage Learning Engineering. All Rights Reserved

00 00 00 04
00 00 00 08
00 00 00 06
00 00 00 01

g

00 00 00 00

Clements

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

AUTOINDEXING POST-INDEXING MODE

Autoindexing post-indexing addressing first accesses the operand at the
location pointed to by the base register, then increments the base register.

LDR r0,[r1],#8 ;load rO with the word pointed at by r1
;now do the post-indexing by adding 8 to rl

Post-indexing is denoted by placing the offset outside the square. The RTL
definition of this instruction is:

[r0] < [[r1]] Access the memory address in base register rl
[r1] « [r1] + 8 Update pointer (base register) by adding offset

© 2014 Cengage Learning Engineering. All Rights Reserved

98

Computer Organization and Architecture: Themes and Variations, 1% Edition

Clements

AUTOINDEXING POST-INDEXING MODE

Autoindexing post-indexing addressing first accesses the operand at the

location

FIGURE 3.38 Register indirect addressing with offset

(a) LDR r0, [r1,#12]
Offset added to base
register to generate effective
address. Operand accessed
at effective address. Base
register remains unchanged.

before

(¢) LDR xO0, [r1l], #12
Effective address specified by base
register. Operand accessed at
effective address. Offset added to
base register after the access.
© 2014 Cengage Learning Engineering. All Rights Reserved

before

(b) LDR rO0, [r1,#12]!
Offset added to base register
to generate effective address.
Operand accessed at effective
address. Base register
updated after access.

99

gage Learning 2014

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Subroutine Call and Return
The 1instruction BSR Proc A calls subroutine Proc A.

The processor saves the address of the next instruction to be executed in a
safe place, and loads the program counter with the address of the first
instruction in the subroutine.

At the end of the subroutine a return from subroutine instruction, RTS,
causes the processor to return to the point immediately following the
subroutine call.

FIGURE 3.40 The subroutine call and return (this mechanism is not used by ARM
processors)
Flow of Control Structure of the Code

instruction

Normal code instruction

execution instruction
l instruction

instruction
BSR Proc A
instruction

BSR Proc_A

Save PC instruction
instruction
instruction

Continue normal
processing

100

© Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM SUPPORT FOR SUBROUTINES

ARM processors do not provide a fully automatic subroutine call/return
mechanism like CISC processors.

ARM’s branch with link instruction, BL,, automatically saves the return address in
register r14.

The branch instruction (Figure 3.41) has an 8-bit op-code with a 24-bit signed
program counter relative offset. The 24-bit offset is shifted left twice to convert the
word-offset address to a byte address, sign-extended to 32 bits, added to the
program counter.

FIGURE 3.41 Encoding ARM'’s branch and branch-with-link instructions

2827 26 25 24 23

. 24-bit signed word offset

The L-bit is 0 for a branch The 24-bit word offset is shifted left twice
instruction and 1 for a to create a 26-bit byte offset.
branch with link instruction.

-
—
)
o~

o
=
[
[ev)
—)
=%}
=
[
)
=
Fat)

o

)

© 2014 Cengage Learning Engineering. All Rights Reserved

101

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM SUPPORT FOR SUBROUTINES

The branch with link instruction behaves like the corresponding branch
instruction but also copies the return address (i.e., address of the next
instruction to be executed following a return) into the link register r14.
If you execute:

BL Sub A :branch to “Sub_A” with link
;save return address in r14

the ARM executes a branch to the target address specified by the label
Sub A.

It also copies the program counter held in register r15 into the link
register r14 to preserve the return address.

At the end of the subroutine you return by transferring the return
address 1n r14 to the program counter by:

MOV pec.lr ‘we can also write this MOV r15,r14 102

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Suppose that you want to evaluate
several times in a program. Assuming that x is in r0, we can write :

Funcl CMP r0,#0 :test for x> 0
MOVGT r0,x0, LSL#4 ;1fx>0x=16x
ADDGT r0,r0,#1 Af x>0 thenx=16x+ 1
MOVLT 10,00, LSL#5 ;ELSE if x <0 THEN x = 32x
MOV pe,lr :return by restoring saved PC

We've made use of conditional execution here. Consider the following
application of the subroutine.

LDR r0,[r4] ; get P
BL Funcl ; P=(@af P> 0 then 16P + 1 else 32P) First call
STR rO0,[r4] ; save P

LDR 1r0,[r5#20] ;getQ
BL Funcl ; Q=(Gf Q>0 then 16Q + 1 else 32Q) Second call
STR r0,[r5,#20] ;saveP

103

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

We used dummy data for the calls; first with P = 3 and then with Q = -1
(FFFFFFFF, ;). At the end of execution memory locations P and Q contain
the expected values of 49 (31,,) and -32 (FFFFFFEOQ,,). These two values are
stored after the data at addresses 0x4C and 0x50, respectively. We used

indexed addressing with displacement to store the results in memory e.g.,
STR r4,[r0,#8].

FIGURE 3.42 Demonstrating a subroutine call

1C

r0, [r4,%2)]

r0, [r5]
Funcl
r0, [vr5,%8)

r0,
rl,
#0x1

rQ,#
r0,r0, LSL #4
r0,r0, £1 F x then x = Ei &
r0,r0, LSL §5 *ELSE 1f X 0 THEN X 32 - Intemupt
pc,rid returs y toring save + - Supervisor
4 Abod
BL 1 tion, DATA, # - Undefined
= Intemal
PC S (<00000028
Made Supervisor

States 36
Sec 0.00000000

-8 104

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1% Edition Clements

BL instruction, CODE, READWRITE =

sreglster rd

0, [rd,#2]
code

rd, [T5]
Funecl
rl, [r5,$8]

rd, #0x1s » ang=l SWIreason ReportException
rl, =0x2002& : ADF S_tﬂpped App_lis&tiDnExit R13 (5F)
#0x123456 ; ARM semihosting (formerly SWI) R14 (LR)

R15 {FC) 00000
£
r0, #0 . [+ SPSR
rO,r0, LSL #4 -1 + User/System
ro, r0, $#1 . g + Fast Intemupt
r0,r0, LSL #5 : i = 35 - Intemupt
pc,rld . + Supervisor

I . Abnrt
BL instruction, +H- | ndefined
0x00000003 . -~ Intemal
O0xFFFFFFFF 0 = é 00000028
g Supervisor
: 6
0.00000000

Address: |44 Tk

0x000000494 : FF FF FF FF
0x0000004C: 00 00 00 31 FF FF FF EO
0x00000054: 00 00 00 00

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

THE STACK

The stack 1s a data structure, a last in first out queue, LIFO, in which
1tems enter at one end and leave in the reverse order.

Stacks in microprocessors are implemented by using a stack pointer to
point to the top of the stack in memory.

As 1items are added to the stack (pushed), the stack pointer is moved
up, and as 1items are removed from the stack (pulled or popped) the
stack pointer is moved down.

Figure 3.45 demonstrates four ways of constructing a stack. The two
design decisions you have to make when implementing a stack are
whether the stack grows up toward low memory as items are pushed or
whether the stack grows down toward high memory as items are
pushed.

TOS means top of stack and indicates the next item on the stack.
Figure 3.45 shows the stack being used to store a return address after a

subroutine call. 106

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

FIGURE 3.45 Possible stack structures
Initial state of Return address Return address pulled

the stack pushed on the stack off the stack following
after subroutine call an RTS instruction

1K

(a) Stack grows up.
Stack pointer points
to TOS.

(b) Stack grows up.

Stack pointer points
to first free space.

(c) Stack grows down.
Stack pointer points
to TOS.

(d) Stack grows down.
Stack pointer points n n n
to first free space. —|_> n+4 ‘ n+4 n+4

n+8

n+8 n+8 %

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

An 1important application of the stack is to save return addresses
after a subroutine call.

CISC processors maintain the stack automatically. RISC
processors force the programmer to maintain the stack.

FIGURE 3.46 Using the stack to save a return address

S
i

(a) Initial state of the stack (b) Return address (c) Return address pulled
pushed on the stack off the stack following

=
=
QD
L
@
o)
Crd

108

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

SUBROUTINE CALL AND RETURN

A subroutine call can be implemented by pushing the return address on
the stack and then jumping to the branch target address. Typically, this

operation is implemented by JSR target or BSR target by CISC
processors.

Because the ARM does not implement this operation, you could
synthesize this instruction by:

;assume that the stack grows towards low addresses and
;the SP points ;at the next item on the stack.
SUB r13,r13,#4 ;pre-decrement the stack pointer
STR r15,[r13]; ;push the return address on the stack
B Target ;jump to the target address

;return here

109

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Once the code or body of the subroutine has been executed, a return from
subroutine instruction, RTS, is executed and the program counter
restored to the point i1t was at after the BSR Proc_A instruction had been
fetched. The effect of RTS instruction is

RTS: [PC] « [[SP]] :Copy the return address on the stack to the PC
[SP] <« [SP] +4 ;Adjust the stack pointer

In Figure 3.46 the stack moves up by 4 because each address occupies
four bytes. Because the ARM does not support a stack-based subroutine
return mechanism, you would have to write:

LDR r12,[r13],#+4 ; get saved PC and post-increment stack pointer
SUB r15,[r12],#4 fix PC and load into r15 to return

110

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM subroutine call and return

SUB rl3,rl3, #4 ;pre—-decrement the =stack pointer
EZ24DD0O0D4 SUB R13,R13, #0x00000004
00018 : 5TR rls, [T13]): ;push the return adco===
Bc000000... ES8DF000 STIR PC, [R13]
00000000 H B Target ;jump to the target add:r Address- |48
EAQODOO3 B 0x00000020
Egggggggg MOV r0, #0xFF ;return here (this is =z 0x00000048: 00
B<00000000 EZR000FF MOV RO, #0x000000FF 0x0000004C: 00
- RE BO0000000 MOV r0, #0x18 ;angel_SWIIeasor0300000050: 00
- R7 00000000 E3A00018 MOV RO, #0x00000018 0=x00000054: 00
- RE 00000000 g: LDR rl, =0x2002& ;ADP Stopped Applicatior 0x00000058: 00
RS9 00000000 »0x00000018 ES9SF1010 LDR R1, [BC, #0x0010] 0x0000005C: 00
—R10 (00000000 10: sVC $0x123458 ;BAREM semihosting (forme: 0x00000060: 00
~R11 00000000 0x0000001C EF123456 SWI 0x00123456 0=x00000064: 00
—~R12 300000010 11: Target MOV rl,#0xAR ;just a dummy operation 0x00000065: 00
~R13(SP) 00000074 0x00000020 E3AQ010RA MOV 31,#03000000;@. 0x0000006C: 00
----RMfLH} 00000000 12: LDE rl2, [rl3],#+4 ;get the PC and post-inc 0x00000070: 00
00000018 0x00000024 E4SDC004 LDR R12Z, [R13], #0x0004 0x00000074: 0O
[000000, . 13: SUB rl2,rlz, 74 ;modify the restored PC 0x00000078: 00 00 |
E BcO0000000 0x00000028 EZ24CC004 SUE R12,R12, #0x00000004
User/System 14: MOV rl5,rl2 ;sput the return address in the return
Fast Intemupt 0x0000002C EI1AQFOOC MOV PFC,R12

Intermupt
Supervisor SubroutineCall.asm

AREL SubroutineCall, CODE, READWRITE
ENTEY
LDE rl3, Stack
rl3, rl3, #4
rl5, [r13] -
Target
0, ¥0xFF
rl, #0x1S
rl, =0x2002&
#0x123456
Target rl, ¥0xAn
rl2, [rl3],#+4
rl2,rl2, #4
rla, ri2

11

k00000018
Supervisar
17

0.00000000

%]
ot
i

o ™

G

B E

G, m oo

Lol 0o
R
o

oo

m o
g5 0

o
m M m m (b

[
S]
[T

iy
5 o
=
[

o b o W

[T} -l- 0o
h [T

5]

H
o M

3
=y
m o

[
D E

= |
I

Iy
m

H
[

e
b i
R]

F?I..l'

t
o B
=]

S

[T,
(3]
ot

LT
oo
m

we
™ oH
£ Ome
o fL

[
ot gy oot

ls bt
br b

ARER SubroutineCall, DATZ, READWRITE
SPLCE &4 sreserve room for

St o ot

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1% Edition

Nested subroutines

FIGURE 3.48 An example of nested subroutines

Subroutine
Main Body Main body 1 2 3

Level O

Call subroutine 1

Subroutine 1
Level 1

'Return to main

: Call subroutine 2
Subroutine 2

Level 1

' Return to main

- Call subroutine 3
Level 1 Subroutine 3

Call subroutine 4

Level 2 Subroutine 4

: » Call subroutine 5
Subroutine 5

Level 3

' Return to subroutine 4

Subroutine 6 Call subroutine 6

Level 3

< ¥ Return to subroutine 4

< ¥ Return to subroutine 3

' Return to main

» Depth of nesting

© 2014 Cengage Learning Engineering. All Rights Reserved

Clements

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Example of nested subroutine

m The stack and nested subroutines (CISC processors)

Normal code
execution

@ BSR Proc_ A

Save PC

Restore 'w

Proc_A

©

PC

Continue normal
processing
Restore

PC

State of the stack during the two calls and returns

©

Return 2
Return 1 Return 1 Return 1

O ® ©

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

LEAF ROUTINES

A leaf routine doesn’t call another routine; it’s at the end of the tree. If you
call a leaf routine with BL, the return address is saved in link register
r14. A return to the calling point is made with a MOV pe.lr.

If the routine is not a leaf routine, you cannot call another routine without
first saving the link register.

BL XYZ :call a simple leaf routine

BL), QYA :call a routine that calls a nested routine
XYZ I ;code (this is the leaf routine)

MOV pe,lr :copy link register into PC and return

XYZ1 STMFD sp!,{r0-r4,lr} ;save working registers and link register

Bl XNy :call XZY — overwrites the old link register

LDMEFED sp!l,{rO-r4,pc} ;restore registers and force a return -

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Subroutine XYZ is a leaf subroutine that does not call a nested
subroutine and, therefore, we don’t have to worry about the link
register, r14, and we can return by executing MOV pc,lr.

Subroutine XYZ1 contains a call to a nested subroutine and we have
to save the link register in order to return from XYZ1.

The simplest way of saving the link register is to push it on the
stack. In this case we use a store multiple registers instruction and
also save registers r0 to r4.

When return from XYZ1, we restore the registers and load the saved

rl4 (the return address in the link register) into the program
counter.

115

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

DATA ORGANIZATION AND ENDIANISM

Figure 3.50 shows how bytes in memory are numbered from 0 to 2 — 1.

Word numbering is universal and the first word in memory word 0 and the
last word, 2”7 — 1.

Direction of increasing add)resses

Byte O | Byte 1 | Byte 2 Byte 2" — 1

~

The memory array

raming 2014

(a) Memory locations as an arra

© Cengage Le

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Bit numbering can vary between processors. Figure 3.51a shows right-to-
left numbering, with the least-significant digit on the right.

Microprocessors (ARM, Intel) number the bits of a word from the least-
significant bit (Isb) which 1s bit 0, to the most-significant bit (e.g., msb)
which is bit m — 1, in the same way.

Some microprocessors, (PowerPC) reverse this scheme, as illustrated in
Figure 3.51b.

FIGURE 3.51 Numbering the bits of a byte

7]6]5]4]3[2[1]0 o0]1]2[3[4[5[6[7

(a) Bit numbering with the (b) Bit numbering with the

least-significant bit at least-significant bit at
the right the left

© Cengage Learning 2014

117

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

As well as the way in which we organize the bits of a byte, we have to
consider the way in which we organize the individual bytes of a word.

Figure 3.52 demonstrates that we can number the bytes of a word in two
ways. We can either put the most-significant byte at the highest byte

address of the word or we can put the most-significant byte at the lowest
address in a word.

The ordering 1s called big endian if the most-significant element goes in at
the lowest address, and little endian if it goes in at the highest address.

FIGURE 3.52 Loading four bytes in stored longword

Memory address The bits of a word

/ stored in memory

n+1
bits 24 — 31 | bits 16 — 23 bitsO 7 | bits8—15 | bits 16-23

(a) The most-significant byte is stored at the lowest address (b) The least-significant byte is stored at the lowest address
i little endian)

ge Leaming 2014

118

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

B1.OCK MOVE INSTRUCTIONS

The following conventional ARM code demonstrates how to load four
registers from memory.

ADR r0,DataToGo ;load rO with the address of the data area

LDR rl1,[r0],#4 : load r1 with the word pointed at by rO
: and update pointer
LDR r2,[r0],#4 ; load r2 with word pointed at by r0
; and update the pointer
LDR r3,[r0] #4 : and so forth for remaining registers r3 and r5...

LDR r5,[r0] #4

ARM has a block move to memory instruction, STM, and a block move
from memory, LDM that can copy groups of registers to and from
memory. Both these block move instructions take a suffix to describe how

the data 1s accessed.
119

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Conceptually, a block move is easy to understand, because it’s simply
a ‘copy the contents of these registers to memory’ or vice versa.

Let’s start by moving the contents of registers rl, r2, r3, and r5, into
sequential memory locations with

STMIA r0!,{rl1-r3, r5} ;note the syntax of this and all block

This instruction copies registers rl to r3, and r5, into sequential
memory locations, using r0O as a pointer with auto-indexing
(indicated by the ! suffix).

The suffix IA indicates that index register r0 is incremented after
each transfer, with data transfer in order of increasing addresses.

Although ARM’s block mode instructions have several variations,

ARM always stores the lowest numbered register at the lowest

address, followed by the next lowest numbered register at the next

higher address, and so on (e.g., rl then r2, r3, and r5 in the 190
preceding example).

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

Executing STMIA r0!,{rl-r3, r5}

[%)E:\CengageBook\Z_ARM\MoveMultiple Luvproj - pVision4
File Edit WView Project Flash Debug Peripherals Tools SVCS Window Help

SH@| s a9 [==) - [3] @] C&[B] X

mEO BP0 0 e @Ml k-
| Registers 2 x| [#] MoveMultiple.asm N &
Register I\I"d.pe = 1]l AREA MowveMultiple, CODE, READWRITE j
= Cumrent 02 ENTRY
03 LDR rl,=0x11111111 ;Let's set up some nice simple values that we can track
R1 Ga1IIM 04 LDR r2, —-.xzzzzzzzz
R2 22222222 05 LDR r3,
R4 (00000000 o7 ADR rl] Stack =
RS 55555555 08 STMIA r0!,{rl-r3, r5} Address l{ho 0 |:|
R6 000000000 03 MOV r0, #0x18
R7 (00000000 10 LDR T}:_=E':‘§'3"3'25 0x0000001C: E5 9F 10 38
e fapseoore] e Lowizsase 0x00000020: EF 12 34 56
R10 oo0000000 | |[| 13\ Stack seace 20 ,.) more soace 0x00000024: 00 00 00 00
R11 (x00000000 14 END 0x00000028: 00 00 00 00
R12 (x00000000 0x0000002C: 00 00 00 00
;EE;; goﬂoomoo 0x00000030: 00 00 00 00
RI5(PC) G:00000018 r0 contains 0x48 which is the value 0x00000034: 00 00 00 00
. B 11 11 11 11
8--CPSR (00000003 after the data has been stored. 0x00000038: 12 =2 -
I = SPSR (00000000] 0x0000003C: 22 22 22 2
i project | B Registers | [« 0x00000040: 33 33 33 3
- [Simuistion_ |0X00000044: S5 55 55 S5
\ Registers saved on the stack 0x0000004€: 00 00 00 00
Ox0000004C: 11 11 11 11
. . 0x00000050: 22 22 22 22
Registers preloaded with data 0X00000054: 33 83 33 33
Registers loaded in the constant 0x00000058: SS 55 S5 S5 ¥

pool before execution & Call Stack | F@Locals JMemonrll

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

BLOCK MOVES AND STACK OPERATIONS

ARM’s block move instruction is versatile because it supports four
possible stack modes. The differences among these modes are the
direction in which the stack grows (up or ascending and down or
descending) and whether the stack pointer points at the item currently
at the top of the stack or the next free item on the stack. CISC processors
with hardware stack support generally provide only one fixed stack
mode. The ARM’s literature uses four terms to describe stacks:

1 DF descending full Figure 3.52a
2. AF ascending full Figure 3.52b
3. DE descending empty Figure 3.52¢
4. AE ascending empty Figure 3.52d

ARM uses the terms ascending and descending to describe the growth of
the stack toward higher or lowers addresses, respectively and NOT
whether it grows up or down on the page.

A stack is described as full if the stack pointer points to the top element
of the stack. If the stack pointer points to the next free element above
the top of the stack, then the stack is called empty.

© 2014 Cengage Learning Engineering. All Rights Reserved

122

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

m ARM'’s four stack modes

(a) Stack full descending (b) Stack full ascending

Free ltem 1

8
Item 3 4

ltem 2

ltem 2

) ltem 1

n-
n-—
item 3|n
n+

Free

|
Stack grows towards high memory
Stack pointer points at top of stack

Stack grows towards low memory
Stack pointer points at top of stack

(c) Stack empty descending (d) Stack empty ascending

2 T Item 1

Item 2

—>»| Free -

8
4

1
ltem3({n -8
4

ltem2|n - ltem 3

sSp ltem 1 SP +——| Free

n-—
n-—
n
n+

|
Stack grows towards high memory

Stack pointer points at next
free location

Stack grows towards low memory
Stack pointer points at next
free location

(© Cengage Learning 2014

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

ARM has two ways of describing stacks, which can be a little confusing
at first. A stack operation can by described either by what it does or how
1t does 1it.

The most popular stack points at the top item on the stack and which
grows towards lower addresses.

This 1s a full descending stack, FD (the type used in this text).
We can write STMFD sp!,{rO,r1} when pushing rO and r1 on the stack,

and we can write LDMFD sp!,{r0,r1} when popping r0 and r1 off the
stack.

A full descending stack is implemented by first decrementing the
pointer and then storing data at that address (push data) or by reading
data at the stack address and then incrementing the pointer (pull data).

124

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

APPLICATIONS OF BLOCK MOVE INSTRUCTIONS

One of the most important applications of the ARM’s block move instructions
1s 1n saving registers on entering a subroutine and restoring registers before
returning from a subroutine. Consider the following ARM code:

BL test ‘call test, save return address in r14

test STMFED r13!,{rO-r4,r10} ;subroutine test, save working registers

body of code
LDMEFED r13!,{r0-r4,r10} ;subroutine completes, restore the registers
MOV pe,rl4d :copy the return address in r14 to the PC
125

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

We can reduce the size of this code because the instruction MOV pe,rl4 is
redundant.

If you are using a block move to restore registers from the stack, you can
also include the program counter. We can write:

test STMFED r13!,{r0-r4,r10,r14} ;save working registers
: and return address in r14

LDMEFED r13!,{r0-r4,r10,r15} ;restore working registers
;and put r14 in the PC

At the beginning of the subroutine we push the link register r14
containing the return address onto the stack, and then at the end we pull
the saved registers, including the value of the return address which is
placed in the PC, to effect the return.

126

© 2014 Cengage Learning Engineering. All Rights Reserved

Computer Organization and Architecture: Themes and Variations, 1°¢ Edition Clements

The block move provides a convenient means of copying data between
memory regions.

In the next example we copy 256 words from Table 1 to Table 2.

The block move instruction allows us to move eight registers at once, as
the following code illustrates:

ADR r0,Tablel : r0O points to source (note pseudo-op ADR)
ADR rl,Table2 : rl points to the destination
MOV r2,#32 : 32 blocks of 8 = 256 words to move

Loop LDRFD r0!,{r3-r10} : REPEAT Load 8 registers in r3 to r10
STRED r1!{r3-r10} ; store the registers at their destination
SUBS r2,r2#1 : decrement loop counter
BNE Loop : UNTIL all 32 blocks of 8 registers moved

127

© 2014 Cengage Learning Engineering. All Rights Reserved

