
Boats and Planes and Trains

Some might be tempted to think that operating systems

belong only to conventional computers like PCs.

Operating systems exist in embedded systems ranging

from cameras to aircraft automatic landing systems to

engine controllers in automobiles. Consider the modern

digital camera. This has input and output devices

(image sensor, buttons and joysticks, touch-sensitive

screen), a processor, and storage. Moreover, the

processor may be performing many complex tasks such

as image processing and even video encoding. Such a

complex system requires an operating every bit as much

as a personal computer.

Operating Systems – An Introduction

This article provides an introduction to one of the most important items of software, the operating
system. We begin with a very brief description of the operating system’s role, its history, and then a
description of some of the actions it performs.

The operating system is rather paradoxical. An operating system may consume a considerable
fraction of the cost of a personal computer if it is Windows. On the other hand, it may cost little or
nothing if it is Linux or Android based. Similarly, one author might describe the operating system as
being like the perfect government – it facilitates the running of the state but does not perform actions
itself. On the other hand, some modern operating systems are not like perfect bureaucrats operating
in the background, but provide many services to the users. Here, we look at some of these
paradoxes.

Role of the Operating System

A simple working definition of an operating system is that it provides an interface between a
computer’s hardware and software whose function is to
control the operation of the whole system. If you consider an
orchestra as being composed of instruments, players, and a
conductor, the conductor is anagoges to the operating
system. A conductor does not make music; he or she
enables the musicians and instruments to work together
harmoniously to achieve a desired goal. Similarly, the
operating system integrates all the various parts of the
computer (processor, memory, peripherals, input/output
devices) and ensures that they work efficiently with the
various programs being executed.

The operating system almost entirely frees the user from
having to know anything about the details of the computer.
When you with the use a word processor, do you have to go
and look for it somewhere on a disk drive, figure out how to
get it into the computer’s memory (and where to put it)? Do you have to think about how you can
route information form the Internet into your computer? No. All these tasks are carried out
automatically by the operating system. All you have to do is to click a mouse on an icon, and that it.

But it wasn’t always like that.

History of Operating Systems

The first electronic computers appeared in the 1940 and 1950s. These were large devices
constructed using vacuum tubes but with very limited input and output devices. Typically, data was
input and output by means of teleprinters (a now obsolete electromechanical devices with a keyboard
and a mechanical printer) and many control functions were performed by means of switches. These
computers were designed to perform scientific and engineering calculations

Before the invention of operating systems, you had to control the computer directly. In the very early
days of the computer, the computer was programmed directly in machine code by using switches on a
front panel to input strings of 1s and 0s. Life was made a little easier in the 1950s when data could be
entered by means of punched cards or paper tape. However, in those days a program was loaded
into the system and run until it was completed before the next program could be run.

The first operating systems developed in the 1950s were called batch systems because they allowed
a group of jobs (i.e., programs) to be submitted to a computer—normally in the form of large decks of
punched cards. Jobs were executed in the order in which they were submitted. The batch operating
system allowed programs to be run one after another and control cards to be used to select memory
devices and I/O hardware.

Operating Systems Curriculum

It is always instructive to look at what others regard as

the curriculum for a course in operating systems. The

IEEE/ACM joint committee’s latest report (2013) lists

the following as the key components of an OS course.

 OS principles

 Concurrency

 Scheduling and dispatch

 Memory management

 Security and Protection

 Virtual machines

 Device management

 File systems

 Real time and embedded systems

 Fault tolerance

 OS performance evaluation

The BCS Certificate in IT Computer & Network

Technology paper is equivalent to the first year of a UK

degree in computing, and its OS syllabus is:

 The human interface

 Multitasking, interrupts, concurrency, scheduling,

memory management

 System software: Internet browsers, email systems,

security products (e.g. anti virus software)

 System performance and its evaluation: definition,

measurement and benchmark

Driving Forces behind Operating Systems

Some might be tempted to think that operating systems belong only

to conventional computers like PCs.

The next generation of operating systems employed multitasking that permitted computers to run
several jobs at the same time. Of course, programs were not executed at exactly the same time; they
were divided into slices and interleaved which gave the
impression that they were running concurrently. The operating
system was responsible for sequencing the execution of these
jobs and ensuring that each job got the memory and resources
it required. Multitasking operating systems were developed for
mainframe computers by companies like IBM in the 1960s.

A close relative of a multitasking operating system is the
timesharing or multiuser system. From the late 1960s to the
1970s (i.e., pre-microprocessor) computers were still very
expensive and it was not possible to give every used their own
computer. The timesharing operating system was developed to
allow several users to access a computer at the same time via
on-line terminals. Each user sat at a terminal and was able to
interact with the computer in real time. You could edit a
program, compile it, and then run it without getting out of your
seat. Although entirely commonplace today, that was
considered a great step forward.

Another relative of multitasking is the real-time operating
system. The real-time operating system was originally
developed for embedded computers controlling complex
systems in industry such a chemical plants and oil refineries. A
real-time operating system is designed to ensure that all the
various programs running a process can respond to external
events (e.g., the detection of a dangerously high-temperature)
within a guaranteed time. Today real-time embedded systems
are used in safety-critical systems in automobiles.

The low-cost of personal computers and the creation of
computer networks led to the development of networked operating systems in the mid-1980s. A
networked operating system gives you control of your own system and makes other systems on the
network appear as an extension of your computer. In a networked system you can access the
resources of other computers.

One of the most important developments in operating system technology took place in the early
1980s at the Xerox Palo Alto Research Center, where the graphical user interface, GUI, was
developed. Users employ a pointing device such as a mouse to select options on a menu displayed
on the screen. The graphical user interface was employed by both Apple in their Macintosh range of
computers and by Microsoft in their Windows operating system. Today, GUI interfaces have been
extended to almost all devices with screens: smartphones, tablets, and cameras.

To a considerable extent, you could say that operating systems have broadened the access to
computers. First-generation computers were programmed by people who had to be programmers,
systems designers and engineers—they had to understand the computer at the level of electronic
circuits. The batch and timesharing operating systems allowed programmers, students and scientists
to use the computer without having an intimate knowledge of the computer.

The graphical operating system environments of the 1990s took the expansion of computing one step
further by enabling the non-specialist to use the computer as a tool with almost no knowledge of the
underlying computer science.

The growth of interconnectivity, first with the Ethernet and then with the Internet, has led to the growth
of the client-server model of computing. Processes running on one of the terminals are called client
processes and are able to make requests to the server. Thus, the operating system is distributed
between the client and the server. A client on one host is able to use the resources of a server on
another host (the programmer may not even be aware of the location of the server). Today, servers
are also known by the type of service they provide; for example, web server or file server.

Mainstream Operating Systems

Between the 1960s and 1980s at the peak of the mainframe and minicomputer era, there were many
operating systems. Often, each new manufacturer created a special-purpose operating system for
their own range of computers; for example, IBM’s OS/360 that was designed in the mid-1960s for
IBM’s mainframes.

Two events led to a rationalization of operating systems. The Unix operating systems was developed
at AT&T’s Bell Labs in the USA and adopted by the then popular PDP-11 minicomputer. However,
Unix was rapidly adopted by the academic world and has become a de facto standard operating
system. In 1991 Linus Torvalds released a free software (open) version of Unix called Linux. Since
then, Unix has become a standard operating system for all those who do not use Windows.

Unix is a command-line operating system; that is, it uses a language (rather like a programming
language) to perform operations. However, many modern versions of Unix/Linux now use graphical
front ends in order to make it easier for non-computer experts to used computers whose underlying
operating system is Unix, for example, Apples OS X is built in Unix.

Windows

The most popular language running on PCs is Microsoft’s Windows. When IBM introduced its
personal computer in the 1980s, Microsoft was invited to write a small test-based operating system to
control the PC. MS-DOS was a very basic operating system that provides simple file-handling
facilities; that is, the ability to create and delete files and to execute files.

In 1985 Microsoft designed their first GUI interface called Windows. This operating system allows
users to have multiple windows open at the same time on the monitor. Some traditionally non-OS
functions such as a text editor, calendar, and calculator were also included. This was the beginning of
the expansion of operating systems into the area of applications.

By 2013 Microsoft has released version 8.1 of Windows (early versions were numbered by the year,
or by a name, and later by version number). Windows 8.1 represents Microsoft’s attempt to reconcile
a traditional computer operating system with a tablet and smartphone environment that uses a
touchscreen as a prime input.

Android

Android is an operating system that was developed by Android Inc., a company that was taken over
by Google in 2005. Like Linux, Android is an open source product (even though it was originally
developed commercially). Android is a GUI-based operating system built on Unix and is specifically
designed for mobile devices with touchscreens such as smartphones and tablets. By 2010, Android
had become the world’s most popular mobile operating system and by 2013 it had taken an 80%
share of the smartphone market. In late 2013 the most most recent version of Android was 4.4, also
known as KitKat.

Android is not the only mobile operating system. Apple has designed its own iOS (currently version
iOS 7 in 2013). Like Android, iOS is built on Unix, but unlike Android iOS is not an open system and it
runs only on Apple hardware. Consequently, Apple applications are not generally available on non-
Apple hardware.

The Operating System as an Interface

The first role of the operating system is to act as an interface between the user and the system
hardware and software. A user wants to tell the computer what is to be done and is not concerned
with how it is done.

The first operating systems used job control languages, JCLs, to control the way in which a computer
loaded software, run the software and routed information to I/O devices such as tape drives and
printers. In order to use a JCL which is not unlike many other computer languages, you have to be a
programmer with a high level of knowledge. The GUI made life easier for the professional and made it

possible for non-professionals to use computers. Note that the JCL is not dead. It is still used by some
computers in professional applications and many Unix/Linux users still prefer to employ a non-GUI
interface. Using a JCL is not a mental aberration; you can do things with a JCL that are not generally
possible with a GUI, for example, repetitive and conditional actions.

The GUI represents operations by icons on a screen and lets the user make selections by clicking
objects. Moreover, by allowing left and right clicks (or clicking with control keys pressed) you can give
the user a range of options. The use of a GUI is largely intuitive and the learning curve is not steep. In
other words, you can begin to use a GUI-based system in far less time than one with a JCL.

GUIs continue to evolve as the underlying technology is developed. Low-resolution screens permit
only chunky icons which limits the number of choices that the user can make. Today’s high-resolution
screens allow a far greater range of icons (and text) that can be selected. Touchscreen monitors often
increase the apparent resolution by providing multiple screens that can be reached by swiping a
finger across the screen. Indeed, multiple-fingered gestures are becoming popular (particularly with
tablets) and these allow special operations such as resizing windows and documents.

Figure 1 The GUI

Two new technologies are beginning to emerge. Direct speech input can be used to interface with
digital systems; for example, the iPhone’s Siri input uses speech recognition and natural language
processing to recognize voice commands and questions. Another input uses a camera to recognize
gestures. You can regard a gesture as a form of 3D manoeuvre that takes place in space rather than
on a screen or tablet. Human sign language is a form of gesture-based communication used to
communicate with those having hearing difficulties. Even facial expressions can be used as the basis
of human-computer communication.

GUIs are not always the best solution to every computer communications problem. Those with
mobility problems or hearing or visual impairments may find it harder to use a GUI than a JCL.

Communication with an operating system using a GUI is a two-way process. An effective system
should also be able to provide feedback to the user to deal with error messages, warnings, advice
and so on.

Multiprocessing

One of the first operating systems that could be used on a variety of different computers

was UNIX, which was designed by Ken Thompson and Dennis Richie at Bell Labs.

UNIX was written in C; a systems programming language designed by Richie.

Originally intended to run on DEC’s primitive PDP-7 minicomputer, UNIX was later

rewritten for the popular PDP-11. This proved to be an important move, because, in the

1970’s, most university computer science departments used PDP-11s. Bell Labs was

able to license UNIX for a nominal fee, and, therefore, UNIX rapidly became the

standard operating system in the academic world.

UNIX is a very powerful and flexible, interactive, timesharing operating system that

was designed by programmers for programmers. What does that mean? If I said that

laws are written for lawyers, I think that a picture might be forming in your mind.

UNIX is a user friendly language like a brick is an aerodynamically efficient structure.

However, UNIX is probably the most widely used operating system in many

universities—this is what Andrew Tannenbaum had to say on the subject

“While this kind of user interface [a user friendly system] may be suitable for novices,

it tends to annoy skilled programmers. What they want is a servant, not a nanny.”

UNIX is a powerful and popular operating system because it operates in a consistent

and elegant way. When a user logs in to a UNIX system, a program called the shell

interprets the user’s commands. The commands of UNIX take a little getting used to,

because they are heavily abbreviated and the abbreviations are not always what you

might expect; for example, if you want help you type man which is short for “manual”.

Similarly, the MS-DOS command type that lists the contents of a text file is given the

more obscure name cat (short for catalogue) in UNIX. To be fair, UNIX facilities like

the wildcard character “*” make it very easy to carry out powerful operations; for

example, the command rm *.tmp allows you to delete any file that has the extension

tmp.

Because of UNIX’s immense popularity in the academic world, it influenced the

thinking of a generation of programmers and systems designers.

Multiprocessing

This section assumes that the computer has a single

processor and that tasks can be split up into slices and

run sequentially. Modern computers have multiple

processors and tasks can be allocated to individual

processors and run in parallel. That is, multitasking

divides tasks into slices in time whereas

multiprocessing divides tasks into slices in space.

Multitasking and multiprocessing involve similar

operations, the decomposition of tasks into time

slices. However, multitasking is controlled by the

operating system and used to give the appearance than

several processers are running at the same time.

One trend we can expect to see in the design of operating systems is the growth of configuration and
anticipation mechanisms. Configuration describes the ability of an interface to be structured to suit its
user; for example, each member of a family might tailor the GUI to their own uses in terms of
resources and permissions. Anticipation indicates the ability of an operating system to guess what the
user might wish to do next and to present selections and alternatives in advance. We already see this
in look-ahead typing mechanisms that attempt to reduce the number of keystrokes by guessing what
the user is going to type next.

Multitasking

Computers are capable of running several programs simultaneously. You can use a word processor
while downloading a movie over the Internet. The ability of a computer to run two or more programs
simultaneously is called multitasking. Because a CPU has a
single program counter that steps through a program
instruction by instruction, such multitasking is apparently
impossible. However, the human time frame is different to
the computer’s time frame; a second is a fleeting moment to
a human, but to a computer it is 1,000,000,000
nanoseconds or over 10,000,000 instructions. If the
operating system switches between programs A, B, and C
rapidly (i.e., the programs are executed in the sequence
ABCABCABCABC,...), the computer still executes programs
sequentially but it appears to a human as if it were
executing A, B, and C in parallel. Figure 2 illustrates this
concept. Both television and the cinema rely on the same
phenomenon; they show a rapid sequence of still images
but the viewer perceives a moving image.

We are going to continue our description of the operating
system by looking at its heart—the part that holds everything else together, the kernel.

Figure 2 Multitasking by switching between three tasks

The Kernel

One of the most important components of an operating system is its kernel or nucleus or first-level
interrupt handler. This component deals with interrupts from all sources and is responsible for
switching tasks (i.e., transferring control from one task to another). The kernel is important because its
performance directly determines the efficiency of the operating system. If the operating system
switches between tasks rapidly, it is vital that as little time as possible be devoted to the task
switching process itself—the more time spent in switching tasks, the less time is available to the
running of the tasks themselves.

An essential part of the kernel is the interrupt mechanism that facilitates the task switching process.
Although we have already introduced interrupts when we described how the computer performs
input/output operations, we provide a summary here.

 An interrupt is a request to the processor for attention

 The interrupt may be a hardware interrupt that is received from an external device

 The interrupt may be a software interrupt that is generated internally by means of a special
instruction called a trap

 The interrupt may be a software interrupt that is generated by certain types of error

 The interrupt is dealt with automatically by calling an interrupt handler

 Interrupt handlers form part of the operating system

 An interrupt is transparent to the program that was interrupted—the interrupt handler
preserves all working registers

Figure 3 illustrates the simplified structure of the software in a typical general-purpose computer. The
software components have been divided into two groups: those that belong to applications programs
such as word processors or compilers (i.e., user 1 and user 2), and those that belong to the operating
system (in the group that is shaded). The kernel (marked scheduler in figure 3) is responsible for
switching between tasks.

Figure 3 Software components in a computer

Figure 4 demonstrates how the software components of a computer systems can be regarded as a
hierarchical structure with the scheduler at the center surrounded by the other components of the
operating system. The uppermost layer consists of the user tasks that employ the services of the
operating system. There are two reasons for using a hierarchical model of the operating system. The
first is that the outer layers request services provided by the inner layers (this model shares some of
the features of the ISO model for open systems interconnection). The second is that the kernel at the
heart of the operating system determines the fundamental characteristics of the operating system.

Figure 4 Hierarchical model of an operating system

What is a Task?

A task or process is a piece of executable code that can be executed by the processor (i.e., CPU).
Each task runs in an environment that is made up of the contents of the processor’s registers, its
program counter, and its status register that contains the flag bits. The environment defines the
current state of the task and tells the computer where it’s up to in the execution of a task.

At any instant a task can be in one of three states: running, runnable, or blocked. Figure 5 provides a
state diagram for a task in a multitasking system. When a task is created, it is in a runnable state—it
is waiting its turn for execution. When the scheduler passes control to the task, it is running (i.e., being
executed). If the task has to wait for a system resource such as a printer before it can continue, it
enters the blocked state. The difference between runnable and blocked is simple—a runnable task
can be executed when its turn comes; a blocked task cannot enter the runnable state until the
resources it requires become free.

Figure 5 State diagram of a task in a multitasking system

Suppose that the buffer program is currently being executed, and that a timer circuit generates a
periodic hardware interrupt to invoke the scheduler every t seconds. This operation is called
preemptive task switching, because a task is suspended by the active intervention of the scheduler
whether or not the task has been completed. A non-preemptive scheduler is called by a task itself
when the task has run to completion or requires an operating system service. When the scheduler in

the operating system is called, it must ensure that the task that was just halted is left in such a state
that it can later be resumed as if nothing had happened. The scheduler then locates the next task to
run and passes control to it.

Figure 6 illustrates how task switching is carried out in a system with two tasks. Initially, Task 1 shown
in blue at the top of figure 6, is running. Task 1 is interrupted by the scheduler in the operating
system. The arrow fromTask 1 to the scheduler shows the flow of control from the Task 1 to the
operating system. The scheduler stores the current values of the current task’s registers, program
counter and status in memory. As we have already said, these registers make up the environment of
Task 1 and completely define its state.

Figure 6 Switching tasks

The scheduler then loads the processor’s registers with the environment of the new task, Task 2,
causing the new task to be executed. In figure 6 you can see that control is passed back from the
scheduler in the operating system to the new task. At a later time the scheduler interrupts Task 2,
saves its environment, and loads the processor with the registers saved from the Task 1. When this
happens, the Task 1 continues from the point at which it was last suspended suspended. We can
represent the action of the scheduler by the following pseudocode.

Save the environment of the current task
REPEAT
 Find next runnable task
UNTIL a runnable task is located
Load the environment of the new task
Execute the new task

The scheduler not only switches tasks, but controls the order in which they are run. Some schedulers
allocate the amount of time each task can be run before being interrupted. Some schedulers prioritize
tasks and ensure that a high priority task (e.g., a request for service from a disk drive) always runs
before tasks with a lower priority.

The way in which an operating system handles task switching depends on the nature of the operating
system—some operating systems are specifically designed to switch tasks efficiently. An operating
system maintains a table of task descriptors called task control blocks, TCBs, that describe the nature
of each task and its status.

Figure 7 describes the conceptual structure of a possible task control block (each real operating
system has its own particular TCB structure). In addition to the task’s environment, a TCB contains a
pointer to the next TCB in the chain of TCBs; that is, the TCBs are arranged as a linked list. A new
task can be created simply by adding its TCB to the linked list. The TCB contains additional
information about the task such as its priority, status (runnable or blocked), and memory
requirements.

Figure 7 The task control block

SCHEDULING

Criteria

• CPU utilization – keep the CPU as busy as possible"

• Throughput – # of processes that complete their execution per time

unit"

• Turnaround time – amount of time to execute a particular process"

• Waiting time – amount of time a process has been waiting in the

ready queue"

• Response time – amount of time it takes from when a request was

submitted until the first response is produced, not output (for timesharing

environment)"

Task Scheduling

Task scheduling, that is, determining which task is to be executed next is an important part of an operating system and, to some

extent, determines its characteristics. There are several ways of selecting the next task to execute. Some of these are:

First-Come, First-Served Scheduling

First-come, first-served scheduling, FCFS, is a simple non-preemptive algorithm. The linked list of task control blocks is arranged as

first-in, first-out queue. Each new task created is added to the end (i.e., tail) of the linked list, and each task that is executed is taken

from the front (i.e., head) of the list. Because this algorithm is non-preemptive, each task is executed to completion (or until it

requests operating system intervention) before the next task is executed.

The FCFS algorithm is easy to implement, and is efficient because little time is lost in searching for the next task to run. An important

figure of merit for a multitasking system is the average task waiting time each task has to wait before it is executed. Unfortunately,

the FCFS algorithm can lead to a long average waiting time. Moreover, the sequence in which the tasks are received radically affects

the average waiting time. Suppose four tasks, t1, t2, t3, and t4, are entered into the task list with requirements of 3, 5, 2, and 10 ms,

respectively. The waiting time for each of these tasks is 0, 3, 8, and 10 ms, respectively. The first task has a zero waiting time because

it is executed immediately, and then each task is executed after all the tasks before it have been executed. In this example, the average

waiting time is (0 + 3 + 8 +10)/4 = 5.25 ms.

If the same four tasks arrived in a different order, say, t4, t1, t3, and t2, the waiting times would be 0, 10, 13, and 14 ms, respectively,

corresponding to an average waiting time of (0 + 10 + 13 + 15)/4 = 9.5 ms. Changing the order of the tasks has had a considerable

effect on the average waiting time. Note that the total execution time does not change: that is 3 + 5 + 2 + 10 = 20 ms.

Shortest Task Next Scheduling

Another non-preemptive scheduling algorithm is called the shortest task next, STN, algorithm. Have you ever stood in line at a bank

when everyone in front of you seems to require an endlessly complex transaction and all you want is to pay a bill? You feel like

shouting, “Let me in—It’ll only take a few seconds”. The shortest task next algorithm behaves just like this and executes the task with

the shortest time requirement. This algorithm requires each task to have a parameter that indicates the time required to execute the

task. When a new task is first created, it is inserted into the linked list of TCBs at the appropriate point. The shortest task next

algorithm discriminates against long tasks, although it ensures that short tasks are executed with very little waiting.

If we apply this algorithm to the same four tasks described previously (t1, t2, t3, t4, with times of 3, 5, 2, and 10 ms), the shortest task

next algorithm provides the sequence t3, t1, t2, t4, and an average waiting time of (0, 2, 5, 10)/4 = 4.25 ms. The STN algorithm

provides the minimum average waiting time for any sequence of tasks. In practice, this algorithm cannot be applied accurately,

because the operating system does not always know how long each task is to take.

Priority Scheduling

Priority scheduling arranges the task in order of their priority (i.e., importance). This scheduling strategy makes sense because some

tasks are more important than others—the processor needs to read data from a high-speed disk more urgently than it need to read data

from a keyboard. No task may be executed until all tasks with a higher priority have been executed. When a new task is created, the

linked list of task control blocks is searched and the priority field of each task read. The new task inserted in the position so that tasks

in front of it have a higher equal priority, and tasks behind it have a lower priority.

Although priority scheduling is conceptually reasonable and behaves the way we do, it has a serious limitation. Under certain

circumstances, low priority tasks may never be executed because higher priority tasks are always arriving. Such low priority tasks are

indefinitely blocked. One way of dealing with this type of blocking is to gradually increase the priority of old, low priority tasks in

the queue. Eventually a low priority task will work its way up the queue.

Round Robin Scheduling

A simple method of dealing with the task queue is called the round robin algorithm—each task gets a fixed amount of time, called a

time quantum or time slice, before it is suspended. Round robin scheduling is preemptive, because a new task is run even though the

current task has not yet been completed. The TCBs are arranged as a circular queue, so that the last entry in the queue points to the

first. When all tasks have taken a turn, the first task in the queue is run, and so on. The round robin algorithm is called fair because

each task gets an equal chance of being executed. Round robin scheduling is useful in time-sharing systems where multiple users are

accessing a computer.

The performance of the round robin algorithm depends on the time slice allocated to each task. If the time slice is made very large

and each task executes to completion, this algorithm becomes the same as the first-come first-served algorithm. If the time slice is

very short, each task in a p-task system appears to have a processor working at 1/p the speed of the actual processor (this calculation

neglects the time lost to task switching). With a short time slice, an operating system using the round robin task scheduling algorithm

behaves like a time sharing system.

Here we have looked at some of the fundamental algorithms used to schedule tasks in a multitasking system. In practice there are

many more algorithms that can be employed, each of which have their own advantages and disadvantages.

30

Memory Management

If all computers had an infinite amount of random access memory, life would be easy for the operating
system designer. When a new program is loaded from disk, you can place it immediately after the last
program you fetched into memory. Moreover, with an infinitely large memory you never have to worry
about loading programs that are too large for the available memory. In practice, real computers often
have too little memory. We now demonstrate how the operating system manages the available
memory.

Figure 8a demonstrates a multitasking system in which three programs are initially loaded into
memory—task A, task B, and task C. In figure 8b task B has been executed to completion and
deleted to leave a hole in the memory. In figure 8c task A had been completed, and a new process,
task D, is loaded in part of the free memory left by task B. Finally, in figure 8d a new process, task E,
is loaded in memory in two parts because it can’t fit in any single free block of memory space.

Figure 8 Memory fragmentation in a multitasking environment

A multitasking system runs into the memory allocation and memory fragmentation problems described
by figure 8. We need a simple but fast means of loading data into memory without having to worry
about where it is. In other words we need a system that will map addresses generated by the
computer onto the actual location of the data in memory.

Operating systems solve the problem of matching data accessed by the CPU onto its actual address
by means of memory management that maps the computer’s programs onto the available memory
space.

Figure 9 describes the arrangement of a memory management unit, MMU. Whenever the CPU
generates the address of an operand or an instruction, it places the address on its address bus. This
address is called a logical address—it’s the address that the programmer sees. The MMU translates
the logical address into the location or physical address of the operand in memory.

The logical address consists of two parts, a word address and a page address. Figure 10 illustrates
the relationship between page address and word address for a very simple system with four pages of
eight words (i.e., 4 x 8 = 32 locations).

The address from the CPU in figure 10 consists of a 2-bit page address that selects one of 2

2
 = 4

pages, and a 3-bit word address that provides an offset (or index) into the currently selected page. A
3-bit offset can access 2

3
 = 8 words within a page. If, for example, the CPU generates the address

10101, location 5 on logical page 2 is accessed.

The 3-bit word address from the CPU goes directly to the memory, but the 4-bit page address is sent
to the memory management unit. The logical page address from the CPU selects an entry in a table
of pages in the MMU as figure 10 demonstrates. Suppose the processor accesses logical page 2, the
corresponding page table entry contains the value 3. This value (i.e., 3) corresponds to the physical
page address of the location being accessed in memory; that is the MMU has translate logical page 2

into physical page 3. The physical address corresponds to the location of the actual operand in
memory. The MMU translates a logical address P on page Q into physical address P on page R.

Figure 9 The memory management unit

Figure 10 The structure of paged memory

Why should the operating system go to the trouble of taking an address generated by the processor
and then using an MMU to convert it into a new address in order to access memory? To answer this
question we have to look at how programs are arranged in memory. Figure 11 shows the structure of
both logical memory and physical memory at some point during the execution of tasks A, B, C, and D.
As far as the processor is concerned, the tasks all occupy single blocks of address space that are
located consecutively in logical memory—figure 11a.

If you examine the physical memory, figure 11b, the actual tasks are distributed in real memory in an
almost random fashion. Both tasks B and C are split into non-consecutive regions, and there are two
regions of physical memory that are currently unallocated. Note also that the logical address space

seen by the processor is larger than the physical address space—task D is currently located on the
hard disk and is not in the computer’s RAM.

A processor’s logical address space is composed of all the addresses that the processor can specify.
If the processor has a 32-bit address, its logical address space consists of 2

32
 bytes. The physical

address space is composed of the actual memory and its size depends on how much memory the
computer user can afford. We will soon see how the operating system deals with situations in which
the processor wishes to run programs that are larger than the available physical address space. The
function of the MMU is to map the addresses generated by the CPU onto the actual memory and to
keep track of where data is stored as new tasks are created and old ones removed. With an MMU,
the processor doesn’t have to worry about where programs and data are actually located.

Figure 11 Logical and physical address space

Consider a system with 4 Kbyte logical and physical pages, and suppose the processor generates the
logical address 88123416. This 24-bit address is made up of a 12-bit logical page address 88116 and a
12-bit word address 23416. The 12 low-order bits, 23416, define the same relative location within both
logical and physical address pages. The logical page address is sent to the MMU which looks up the
corresponding physical page address in entry number 881 in the page table. The physical page
address found in this location is passed to memory.

Let’s look at the way in which the MMU carries out the mapping process. Figure 12 demonstrates how
the pages or frames of logical address space are mapped onto the frames of physical address space.
The corresponding address mapping table is given by table 1. Notice that logical page 3 and logical
page 8 are both mapped onto physical page 6. This situation might arise when two programs share a
common resource (e.g., a compiler or an editor). Although each program thinks that it has a unique
copy of the resource, both programs access a shared copy of the resource.

Figure 12 Mapping logical address space onto physical address space

Table 1 Logical to physical address mapping table corresponding to figure 12

Logical page Physical page

0 2

1 5

2 8

3 6

4 3

5 4

6 0

7 1

8 6

9 9

Virtual memory

We’ve already said that a computer can execute programs larger than its physical memory. The
means of accomplishing such an apparently impossible task is called Virtual memory and was first
used in the Atlas computer at the University of Manchester, England, in 1960. Figure 10.18 illustrates
a system with ten logical address pages but only five physical address pages. Consequently, only
50% of the logical address space can be mapped onto physical address space. Table 2 provides a
logical page to physical page mapping table for this situation. Each entry in the logical address page
table has two entries: one is the present bit that indicates whether the corresponding page is available
in physical memory; the other is the logical page to physical page mapping.

Figure 13 A system with a smaller physical address space than a logical address space

Because it’s impossible to fit all the data required by the processor in main memory at any instant,
part of the data must remain on disk. When the processor generates a logical address, the memory
management unit reads the mapping table to get the corresponding physical page address. If the
page is present, a logical to physical address translation takes place and the operand is accessed. If
the logical page is currently not in memory, an address translation cannot take place. In this case, the
MMU sends a special type of interrupt to the processor called a page-fault.

Table 2 Logical to physical address mapping table corresponding to figure 10.18

Logical page Present bit Physical page

0 1 0

1 1 3

2 0

3 1 1

4 0

5 0

6 1 2

7 1 4

8 0

9 0

When the processor detects a page-fault from the MMU, the operating system intervenes and copies
a page of memory from the disk to the random access memory. Finally, the operating system updates
the page mapping table in the MMU, and reruns the faulted memory access. This arrangement is
called virtual memory because the processor appears to have a physical memory as large as its
logical address space.

Virtual memory works effectively only if, for most of the time, the data being accessed is in physical
memory. Fortunately, accesses to programs and their data are highly clustered. Operating systems
designers speak of the 80:20 rule—for 80% of the time the processor accesses only 20% of a
program. Note that the principles governing the operation of virtual memory are, essentially, the same
as those governing the operation of cache memory.

When a page-fault is detected, the operating system transfers a new page from disk to physical
memory, and overwrites a page in physical memory. So, which page gets the chop when a new page
is loaded in memory? The most sensible way of selecting an old page for removal is to take the page
that is not going to be required in the near future. Unfortunately, this algorithm is impossible to
implement.

A simple page replacement algorithm is called the not-recently-used algorithm, NRU. When a page is
created, it is marked with a time bit. The time bit is changed periodically (e.g., every 50 ms), and
therefore, some pages are marked with a 1 and some with a 0. Suppose that the current time bit is 1,
and a new page is marked with a 1. If a page is to be removed, the operating system selects a page
at random that has a time bit set to 0. In this way, you ensure that the page you are overwriting was
created in a previous time slot. The NRU algorithm is not optimum, but it is very easy to implement.

When an old page is replaced by a new page, any data in the old page frame that has been modified
since it was created must be written back to disk. A typical virtual memory system clears a dirty bit in
the page table when the page is first created. Whenever the processor performs a write operation to
an operand on this page, the dirty bit is set. When this page is swapped out (i.e., overwritten by a new
page), the operating system looks at its dirty bit. If this bit is clear, nothing need be done; if it is set,
the page must be copied to disk.

Virtual memory allows the programmer to write programs without having to know anything about the
characteristics or real memory and where the program is to be located. We are now going to look at
another of life’s nasty realities that the operating system has to deal with—the computer equivalent of
the gridlock.

Operating Systems and Deadlock

In a multitasking system operating system several tasks may be running concurrently. These tasks require
various resources during the course of their execution; for example the CPU, the disk, access to other files,
the printer, the mouse, the display, memory, and so on. One of the problems an operating system has to
contend with is called deadlock that occurs when the operating system is blocked and cannot continue. A
type of deadlock that is found in everyday big city life is the gridlock illustrated below.

The roads are full and none of the lanes can move because each lane blocks its neighbor. The west bound
lane is blocked by traffic in the south bound lane. But traffic in the south bound lane is blocked by traffic in the
east bound lane. Traffic in the east bound lane is blocked by traffic in the north bound lane. Traffic in the
north bound lane is blocked by traffic in the west bound lane, and so on.

Consider a situation in which process A in a computer has all the resources it needs to run, apart from the
disk drive, which has been assigned to process B. Process A can run as soon as process B has used the
disk drive and freed it. Process B has all the resources it needs to run, apart from the printer, which is
currently assigned to process A. As soon as process A has released the printer, process B can run. This is
an example of a deadlock because both processes have some of the resources they need, but neither
process can run because the other has a resource it needs.

An operating system can deal with deadlock in several ways. The operating system can apply deadlock
detection and periodically examine the way in which resources are currently allocated to processes. If a
deadlock situation is detected, the operating system must take back resources that have been assigned to
processes and then re-assign them. In terms of the gridlock analogy avobe, the operating system is acting as
a traffic cop that intervene and sorts out problems. This strategy can be expensive, because processing time
is lost each time the operating system goes looking for deadlock. Moreover, it is not a completely effective
strategy, because deadlocked processes are not dealt with until after they have occurred.

An alternative approach is to employ deadlock prevention and ensure that processes never become
deadlocked. Essentially, the way in which resources are allocated to processes is designed to prevent
deadlock. For example, if a process is required to specify all the resources it needs before it runs, the
operating system can determine whether a deadlock will occur.

If the operating system permits a process to run only when all the resources it requires are free, deadlock
cannot occur. Unfortunately, this strategy is sometimes very inefficient because resources may lie idle for a
long time. Another solution is to force blocked processors (i.e., processes waiting for resources) to release
resources in favor of a currently running process.

 Under what circumstances is an operating system unnecessary?

 Why are operating systems with a graphical user interface proving so popular?

 Why do you think that some users don’t like graphical user interfaces?

 A floppy disk can hold 1.4Mbytes of data and a punched card can hold 80 characters (bytes).
Assume that the average punched card contains 40 characters and weighs 1 gm. What is the
total weight of punched cards that can be carried on a floppy disk?

 A multitasking system has 10 tasks. The overhead in switching between two tasks is 200µs.
Suppose you wish to implement a time sharing system using the round robin scheduling
algorithm and switch tasks as rapidly as possible. If the maximum overhead you are willing to
allocate to task switching is 20% of the available processor time, what is the shortest time
slice you can allow a process?

 Six tasks, t1, t2, t3, t4, t5, and t6, have durations of 10, 20, 1, 5, 5, 9ms, respectively. What is
the average waiting time if a first-come first-served scheduling algorithm is used?

 For the same data as question 6, what would the average waiting time be if the smallest task
first algorithm were used?

 Write a program to emulate the task scheduling kernel of an operating system. To do this you
will have to design your own task control block, and select a suitable task scheduling
algorithm.

 What is the difference between a logical address and a physical address?

 Under what circumstances can a system’s logical address space be larger than the system’s
physical address space? If you designed a system whose physical address space was larger
than its logical address space, what do you think the consequences would be?

 What is a hierarchical file structure and why is it so important? Can you think of any other way
of organizing a file structure?

 Tannenbaum prefers operating systems for programmers to operating systems for non-
computer specialists. To what extent do you think that his feelings are justified? Suggest ways
in which an operating system could be constructed to get the best of both worlds (i.e., a level
of terseness that isn’t an insult to a professional programmer and a degree of user
friendliness that enables even users with little or no training to cope)?

 The PATH statement that can be used in an MS-DOS AUTOEXEC.BAT file tells the operating
system which pathways to search for files whose locations are not specified fully. What are
the advantages and disadvantages of the PATH statement?

 Some professional programmers and computer scientists regard UNIX as a good operating
system and MS-DOS as a bad operating system? Why do you think that they have formed
this view? If MS-DOS is less than optimum, what factors do you think contributed?

 Design a better, more flexible, and more powerful language than that used by the MS-DOS
interface. For example, consider way of allowing more than one instruction to be written on
the same line.

 How do you think that the Windows environment could be improved to overcome the
criticisms of those who prefer traditional command line operating systems like MS-DOS and
UNIX.

