
sARM User Guide

The sARM is program that implements an experimental CPU simulator. It is called experimental
because it is not yet complete, and it also incorporates facilities that are not conventionally provided
by a CPU simulator.

The principal purpose of the sARM simulator is to allow students to write and test simple assembly
language programs in a RISC-style, ARM-like language. In other words, it is a tool to enable students
to learn assembly language. Both the simulator and its assembly language are very easy to learn.

sARM includes a range of instruction types (i.e., format) such as RISC, CISC, and stack-based
formats. Real computers with such instruction formats do not exist. This simulator allows students to
experiment with different architectural paradigms. You can use it to write RISC programs, CISC
programs, or even stack-based programs. However, you do not have to use these additional facilities
or even know about them in order to learn assembly language.

Unusually, the underlying architecture of sARM does not have an instruction format (i.e., a fixed
number of bits). This is because the simulator does not simulate a real machine. Instead, it interprets
assembly language instructions; that is, instructions are directly executed from text form without the
source first being converted into binary from and then the binary code executed.

The simulator is written in Python version 3.3 that can be executed on most machines (PC, Mac,
Linux). Interpreters for Python are freely available. The Python website is at https://www.python.org.

Because the simulator is written in source code, it can be readily modified. The simulator uses text-
based output (i.e., it is not graphical windows-based program).

A program may be executed to completion, it may be executed line-by-line in a single step mode, or
breakpoints introduced and execution continue to those points.

The assembly language form of an sARM instruction is:

 Operation operand1,operand2,operand3

Each instruction occupies one line. Blank lines are ignored as are lines beginning with a semicolon, ;,
because the semicolon introduces a comment field that is ignored.

Note that a space must appear before the operation field because any word beginning in the first
column is a label

The simulator is case insensitive, so upper-case, lower-case or any combination is permitted. You

could write aDd r0,R1 and the simulator would be entirely happy.

The simulator has eight registers r0 to r7. It has 16 memory locations and an 8 location stack. Any of
these values can easily be changed by modifying the source code.

Sample Fragment of Assembly Language

Here’s a fragment of code source code that I used to test the simulator. Although I have set it out in
columns. The only requirement is that instructions do not begin in column zero (i.e., the leftmost
position) and that any text after a semicolon is ignored and treated as a comment.

The assembler accepts labels beginning in column 0 which can be used as branch target destinations
are the following code demonstrates. It is also possible to equate a label to a numeric value and then
use that label in instructions instead of the numeric value.

The hash symbol, #, indicates a numeric operand in an instruction (consistent with ARM

programming); for example mov r0,#4 will copy the value 4 into register r0. As in the case of the

ARM, the register order is destination, source1, source 2; for example add r2,r4,r0 adds registers

r4 and r0 and puts the result in r2

This code is ARM-like RISC with register-to-register data processing instructions like add r1,r1,r0.

There are only two memory access instructions ldr (load register from memory) and str (store

register in memory). Both these are pointer-based (i.e., register indirect) instruction that load or store

data using a pointer register that is in square parentheses. For example, ldr r2,[r1] means load

register r2 with the contents of the memory location whose address is in register r1.

The instructions in the code fragment below are all essentially the same as the ARM’s corresponding

instructions. The only significant difference is rnd r2 which returns a random integer in register r2.

This instruction makes it easier to test programs by generating random data (otherwise, you would
have to set up data structures in memory prior to running a program).

; SAMPLE CODE - USED IN TESTING

 mov r0,#0

 nop

xx add r1,r1,r0

 add r0,r0,#1

 bra xx

; PUT RANDOM NUMBERS IN 4 CONSECUTIVE MEMORY LOCATIOND

 mov r0,#4 ;4 locations to fill

 clr r1 ;pointer

Loop rnd r2 ;put a random value in r2

 str r2,[r1] ;store in memory

 add r1,r1,#1 ;increment pointer

 sub r0,r0,#1 ;decrement count

 bne Loop ;repeat until all done

; SEARCH MEMORY FOR LARGEST VALUE

 mov r0,#4 ;4 locations to read

 mov r3,#0 ;dummy biggest

 clr r1 ;pointer

xxx1 ldr r2,[r1] ;read from memory break

 cmp r3,r2 ;compare new value break

 bgt xxx2 ;skip on old greater than new

 mov r3,r2 ;record new large value

xxx2 add r1,r1,#1 ;increment pointer break

 sub r0,r0,#1 ;decrement count

 bne xxx1 ;repeat until all done

 stop

A program can be terminated by a stop instruction or an end assembler directive. Execution will also
stop if an assembly error is detected. In which case you have to re-edit the source file to correct the
error.

Using the Simulator

When the simulator is executed, it looks for a source program to load. This source assembly language
program provides the source code to be executed and is in text form (I use Microsoft’s notepad
editor).

Because I found that I was running the same program frequently, in order to save time typing the
name of a source text file, I provided a default name for the source file.

When the simulator is first loaded, it asks if you want to run the standard source file. If you type y or
yes, it will look for the built-in file. If you type n or no, it will expect you to provide the address of the
source file.

The simulator then asks whether you wish to execute in line-by-line mode with “Enter “y” to turn off
single step mode”.

If you type y, it will run the source program until it is terminated, an error is found, or some other trace
mode is selected.

 Otherwise, an instruction is executed after each carriage return (i.e., enter). Note that if you have an
IN instruction that inputs an integer, you have to type your number followed by two enters: the first
enter terminates the input of your integer and the second enter causes the next instruction to be
executed.

The following fragments of output demonstrates part of a session with the simulator. Note that the
symbol table is first listed followed by the source program after all comments and delimiters have
been removed and lower to upper case conversion performed (this is for debugging purposes). The
symbol table relates all names (e.g., labels) to their appropriate numerical values.

sARM simulator: A simple ARM style simulator

This simlates RISC CISC and stack-based code

sARM is not intended as tool for writing serious assembly programs but as a

means of introducing assembly language

(c) Alan Clements 2014

Do you wish to use the default file? Type 'Yes' or 'No' y

Symbol table

LOOP 2

Line 0 MOV R0 #4

Line 1 CLR R1

Line 2 RND R2

Line 3 STR R2 [R1]

Line 4 ADD R1 R1 #1

Line 5 SUB R0 R0 #1

Line 6 BNE LOOP

Line 7 STOP

Enter "y" to turn off single step mode

PC = 0 Registers 4 0 0 0 0 0 0 0 MOV R0 #4

Z = 0 N = 0 C = 0 V = 0 SP = 15 LR = 0 Memory [0, 0, 0, 0, 0, 0, 0, 0]

Stack = []

Registers in hexadecimal 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0

PC = 1 Registers 4 0 0 0 0 0 0 0 CLR R1

Z = 0 N = 0 C = 0 V = 0 SP = 15 LR = 0 Memory [0, 0, 0, 0, 0, 0, 0, 0]

Stack = []

Registers in hexadecimal 0x4 0x0 0x0 0x0 0x0 0x0 0x0 0x0

PC = 2 Registers 4 0 13 0 0 0 0 0 $LOOP RND R2

Z = 0 N = 0 C = 0 V = 0 SP = 15 LR = 0 Memory [0, 0, 0, 0, 0, 0, 0, 0]

Stack = []

Registers in hexadecimal 0x4 0x0 0xd 0x0 0x0 0x0 0x0 0x0

Features of sARM

Here we mention a few of sARM’s highlights.

Equate

The assembler directive equ equates a label to a value; for example time equ 123 allows you to

write mov r1,#time instead of mov r1,#123.

Input and Output

Two instructions have been provided to permit numeric input and output. These are in r0 and out

r0. For example, if an instruction is in r3, then the simulator will wait until you enter a valid decimal

number, and then that number will be loaded into register r3.

Operating System Calls

An operating system call in the form of a trap instruction has been provided. This instruction is not
included (counted) when the total number of instructions is printed, because it is not regarded as
being part of a program. The operating system call can be used to provide operating system facilities
such as input or output. At the moment, trap is used only for program display and tracing.

Currently, the sARM’s trap instruction can take one or two operands. Two legal trap instructions are

TRAP TRACE ON (this turns on the trace mode)

TRAP TRACE OFF (this turns off the trace mode)

When the trace mode is on, the contents of registers are automatically printed after each instruction is
executed. It’s like single step except that you don’t have to enter a return to execute the next
instruction. Some other trap instructions are:

TRAP SP (display stack)

TRAP STATUS (display status)

TRAP REG (display registers)

TRAP MEM (display memory)

These are used to display information about the state of the processor.

Breakpoints

A breakpoint is a traditional means of debugging code. Execution continues up to the breakpoint, at
which execution stops and the contents of registers and the machine status displayed.

You can add a breakpoint by including the work BREAK at the end of a line with a valid instruction; for
example,

 ADD r1,r2,r3 break

The effect of the break is to cause the contents of the registers etc. to be printed after this instruction
has been executed.

Sample Run of sARM

We are now going to look at the output generated by the execution of a small program. Consider the
following test code in the source file.

; sARM test program

 nop ;nop (no operation) does nothing

time EQU 23

 MOV r1,#time ;load r1 with literal 23

 MOV r2,r1 ;copy r1 to r2

 CLR r3 ;load r3 with 0 - the same as mov r3,#3

 STR r2,[r3] BREAK ;store 23 in memory location 0 and print

registers

 MOV r4,#4

 TRAP TRACE ON

 MOV r5,#6

 ADD r0,r4,r5

 SUB r0,r0,#1

 trap trace off ;note case doesn't matter!

 ADD r1,r1,#4

 add R1,r1,#2 BREAK

 ADD r1 r2 #2 ;note comma replaced by space

 STOP

This source file illustrates the structure of code, demonstrates that case does not matter, and shows
the use of the trace instruction and the break commend. The output of a session using this code is
given below. I have reformatted this slightly to make it easier to read in this document by adding new
lines.

Do you wish to use the default file? Type 'Yes' or 'No' y

Symbol table

TIME 23

Line 0 NOP

Line 1 MOV R1 #TIME

Line 2 MOV R2 R1

Line 3 CLR R3

Line 4 STR R2 [R3] BREAK

Line 5 MOV R4 #4

Line 6 TRAP TRACE ON

Line 7 MOV R5 #6

Line 8 ADD R0 R4 R5

Line 9 SUB R0 R0 #1

Line 10 TRAP TRACE OFF

Line 11 ADD R1 R1 #4

Line 12 ADD R1 R1 #2 BREAK

Line 13 ADD R1 R2 #2

Line 14 STOP

Enter "y" to turn off single step mode y

Breakpoint at next PC = 5 Opcode STR R2 [R3] Instructions executed 5

PC = 4 Registers [0, 23, 23, 0, 0, 0, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0, 0] Z= 0 N= 0 SP= 15 Link= 0

Current stack []

PC = 7 Registers [0, 23, 23, 0, 4, 0, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0] Opcode TRAP TRACE ON

Z 0 C 0 N 0 V 0 SP 15 Link 0 Current stack []

PC = 8 Registers [0, 23, 23, 0, 4, 6, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0] Opcode MOV R5 #6

Z 0 C 0 N 0 V 0 SP 15 Link 0 Current stack []

PC = 9 Registers [10, 23, 23, 0, 4, 6, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0] Opcode ADD R0 R4 R5

Z 0 C 0 N 0 V 1 SP 15 Link 0 Current stack []

PC = 10 Registers [9, 23, 23, 0, 4, 6, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0] Opcode SUB R0 R0 #1

Z 0 C 0 N 0 V 1 SP 15 Link 0 Current stack []

Breakpoint at next PC = 13 Opcode ADD R1 R1 #2

Instructions executed 11

PC = 12 Registers [9, 29, 23, 0, 4, 6, 0, 0]

Memory [23, 0, 0, 0, 0, 0, 0, 0] Z= 0 N= 0 SP= 15 Link= 0

Current stack []

STOP execution at PC = 14 Total number of instructions 12

>>>

We have entered ‘y’ to load the default source program and ‘y’ to turn off automatic single stepping.
Execution now runs to completion here and terminates at the STOP instruction.

Registers are displayed by the BREAK command in Line 4. Registers are displayed between lines 6
and 10 when trace is first turned on and then turned off. Finally, registers are displayed at line 12 by
another BREAK command.

Note that TRAP is a computer instruction that is executed by the program, whereas BREAK is an
assembler directive that is not executed (i.e., it has no effect on program execution and the program
counter is not modified). A BREAK is simply a command to the simulator to display registers.

